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Abstract

This thesis investigates the binary classification task of classifying driver distraction using Drive and Act
(DAA) (Martin et al., 2019) image datasets and vision transformer encoders that are pre-trained using Su-
pervised and Self-Supervised learning (SSL) learning approaches respectively. The main focus is dealing
with data imbalance, comparing the performance of vision transformer encoders pre-trained using super-
vised and SSL approaches, and evaluating their ability to generalize across different views and modalities.
In order to utilize the DAA video dataset, this thesis creates image datasets derived from the DAA dataset’s
videos. This study presents the ‘Clustered Feature Weighting’ dataloading technique as a solution to the data
imbalance issue in the image datasets derived from DAA (Martin et al., 2019) video dataset. This approach
uses the HDBSCAN (Campello et al., 2013) algorithm for unsupervised clustering of features extracted by
a pre-trained vision transformer model. It also incorporates a weighted random sampler (PyTorch Con-
tributors, 2023c) to balance the training batches based on generated weights using unsupervised clustering.
The results show that ‘Clustered Feature Weighting’ successfully achieves a balanced class distribution in
batches during data loading. Additionally, it shows signs of improvements in model performance on the
Kinect Color DAA dataset (Martin et al., 2019). Specifically, it increases the train balanced accuracy by
1.03%, the validation balanced accuracy by 0.5%, and the test balanced accuracy by 0.08% compared to the
traditional imbalanced dataloading method. Nevertheless, additional research is necessary to elucidate this
technique’s potential advantages and disadvantages for model training and generalization.

Furthermore, this thesis evaluates cross-view generalization across two different image views (right top and
front top) and cross-modality generalization across two modalities (RGB and infrared) from DAA dataset on
the driver distraction detection task. The SSL-based encoder consistently performed well in all permutations,
especially when using infrared or grayscale imagery. Despite the problems in cross-view generalization, the
findings affirm that SSL based encoders have the potential to enhance the adaptability and robustness of
driver distraction detection systems. The comparison between the SSL-based vision transformer (Dosovit-
skiy et al., 2020) encoder, specifically the DINOv2 (Oquab et al., 2023) based vit b 14 encoder (Facebook AI
Research, 2023), and the supervised learning-based vit b 16 (PyTorch Contributors, 2024) encoder, demon-
strated that the SSL-based model displayed remarkable feature extraction abilities, leading to significantly
improved performance, especially in tasks that require generalization across grayscale or Infra-Red (IR) im-
age modality. On the Kinect Infra Red (KIR) DAA cross-modality test dataset, the SSL-based model showed
a higher performance level on cross-modality generalization than the supervised learning-based model, with
an improvement of up to 7.17% . While the initial train balanced accuracies are satisfactory, underfitting
highlights the urgent need for better hyperparameter optimization to fully use the model’s potential. This the-
sis contributes significantly to automotive safety, demonstrating the feasibility and advantages of employing
SSL-based encoders for improving driver distraction detection.

Keywords: Self-Supervised Learning, Driver Distraction Detection, Cross-Modality Generalisation, Cross-
View Generalisation, Drive and Act Image Dataset, Dataset Imbalance, Vision Transformer.
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Chapter 1

Introduction

This chapter briefly introduces driver distraction detection. Why is it essential for the computer vision
community, and how does it relate to real-world applications and problems? Furthermore, it includes the
central research questions guiding this thesis, along with a brief outline of the structure of this thesis.

1.1 INTRODUCTION TO DRIVER DISTRACTION DETECTION

Integrating artificial intelligence and advanced computing in the automotive industry has led to significant
road safety and autonomous driving developments. Although there have been significant technological im-
provements, most vehicles still rely on manual operation by the driver. However, the primary cause for traffic
accidents continues to be driver distraction, which includes participating in activities such as using mobile
phones, texting, or conversing with passengers (Li et al., 2022a; Wang et al., 2022). World Health Organiza-
tion (2023) investigated worldwide road traffic fatalities, advancements in safety legislation, and initiatives
to decrease the number of deaths. The data indicates a slight decline in annual fatalities caused by road traf-
fic accidents, reaching 1.19 million 1. However, it highlights the urgent requirement for significant measures
to achieve the United Nations’s target of reducing road traffic deaths and injuries by 50% by 2030 (World
Health Organization, 2023; Walugembe et al., 2020). According to the National Highway Traffic Safety
Administration (2023), distracted driving resulted in 3,308 deaths in 2022 in the USA. The phenomenon of
driver distraction displays notable variations in its development throughout its examination by researchers.
Numerous seminal publications and review papers, such as (Regan et al., 2011; Young et al., 2007; Wang
et al., 2022; Moslemi et al., 2021), have thoroughly examined this phenomenon.

According to National Highway Traffic Safety Administration (2023),

“distracted driving is any activity that diverts attention from driving, including talking or
texting on your phone, eating and drinking, talking to people in your vehicle, fiddling with
the stereo, entertainment or navigation system — anything that takes your attention away
from the task of safe driving.” (National Highway Traffic Safety Administration, 2023)

This broad definition captures a variety of distraction types, including visual, manual, cognitive, and auditory
distractions, as described in previous research works such as Moslemi et al. (2021); Regan et al. (2011); Li
et al. (2020a). For example, visual distractions can occur when drivers glance at passengers in the back

1Data for Action on Road Safety: The 2023 Global Status Report on Road Safety
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seat, watch a multimedia screen, or look at objects placed on the passenger seat, thus diverting their focus
from the road. In contrast, cognitive distractions 2 arise when a driver is mentally absorbed in personal
concerns or daydreams, even while visually monitoring the road (Moslemi et al., 2021). As vehicles evolve
towards higher levels of autonomy and reduce the driver’s responsibilities, the likelihood of drivers engaging
in distracting activities grows. This trend is expected to persist until vehicles reach full autonomy and no
longer need any driver input (Li et al., 2022a). This situation highlights the paradox where greater vehicle
autonomy and minimal driver involvement do not necessarily equate to enhanced safety and reliability.

Moreover, the use of entertainment technology in vehicles has increased from its inception to the present. Ac-
cording to the recent Allianz Distraction Study, such technologies significantly distract drivers, as evidenced
in figure 1.1 (SE, 2023). This figure illustrates the rise in distracted driving activities from 2016 to 2022,
paralleling technological advancements in the automotive sector. At the same time, to mitigate these distrac-
tions, innovations in driver monitoring systems and their integration in the Advanced Driver Assistance Sys-
tems (ADAS) play a crucial role by alerting distracted drivers, potentially reducing accident rates (Moslemi
et al., 2021).

Figure 1.1: Increase in instances of inattentive driving from 2016 to 2022. This figure illustrates the upward
trend in various activities, such as reading text messages on a mobile phone while driving, from 2016 to
2022. These activities have played a role in the rise of distracted driving behavior. Source: (SE, 2023)

1.2 MOTIVATION

Driver distraction stands as a significant cause of road accidents, necessitating rigorous research to foster
a safer environment for road users (Li et al., 2022a; Wang et al., 2022; Regan et al., 2011; Young et al.,
2007; Moslemi et al., 2021). Such research aligns with the United Nations’ 2030 goal to decrease road
traffic fatalities and injuries substantially. Traditionally, in computer vision, driver distraction detection has
leveraged supervised learning algorithms, which depend on labeled data. However, acquiring this data is
often expensive and labor-intensive. Furthermore, supervised learning may not sufficiently generalize across
diverse driving conditions, underscoring the need for unsupervised or self-supervised learning methods (Li

2Cognitive Distractions While Driving: What You Need to Know
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et al., 2022a). Recent technological advances have equipped vehicles with various sensors and cameras,
significantly enhancing the capability to monitor a broad spectrum of driver actions Wang et al. (2022);
Martin et al. (2019). The DAA Dataset (Martin et al., 2019) presents a precious resource for pushing the
boundaries of current research in driver activity recognition and distraction detection. This dataset includes
multiple data modalities, multi-view images, hierarchical labeling, and a detailed differentiation between
various driver actions (Martin et al., 2019). These attributes combined establish it as an exceptional platform
for extensive research and analysis.

The primary objective of this research is to conduct a comprehensive exploration of the DAA Dataset (Martin
et al., 2019) aimed at enhancing our understanding and detection of driver distractions. This study engages
in meticulous experimentation and analysis to assess the efficacy of using Red Green Blue (RGB) (color)
and IR (Gray Scale) imaging modalities from the DAA video dataset (Martin et al., 2019). A focal point of
this research is extracting and creating image datasets and addressing dataset imbalances.

In advancing the field of driver distraction detection, this thesis utilizes advanced pre-trained vision trans-
former encoders. It explores their application across different image modalities and views, testing their
adaptability and generalizability. The comparative analysis includes an encoder trained using a supervised
learning technique and the one developed through SSL framework DINOv2 (Oquab et al., 2023). The sole
purpose of this analysis is to highlight the performance of encoders trained using different techniques like
supervised and SSL on driver distraction detection and to evaluate the impact of various data modalities and
image views on the accuracy and generalization of distraction detection.

Ultimately, this thesis aims to enhance driving safety, aligning with global safety objectives significantly.

1.3 RESEARCH QUESTIONS

This thesis embarks on an exploration guided by these essential research questions:

• Practical Challenges: How can the issue of data imbalance in the DAA dataset (Martin et al.,
2019) be addressed? Is it possible to employ unsupervised learning techniques for this purpose, and
if so, how can they be effectively implemented?

• Effectiveness of SSL Models: What are the benefits and drawbacks of using vision transformer
encoders pretrained using SSL based approaches, such as Self-Distillation with no labels v2 (DI-
NOv2) (Oquab et al., 2023) over supervised learning based encoder, for detecting driver distraction?

• Generalization Capabilities: How do different image views, such as the right top view and the
front top view in the DAA dataset (Martin et al., 2019), impact the detection of driver detection
using computer vision? Additionally, does a vision transformer (Dosovitskiy et al., 2020) encoder
pre-trained using a self-supervised learning approach maintain consistent performance on driver
distraction detection tasks or generalize well across different views at hand?

• Data Modality Impact: What are the impacts of varying data modalities, such as RGB and IR im-
ages, on detecting driver distractions? Furthermore, does the vision transformer encoder pre-trained
using the self-supervised learning approach DINOv2 (Oquab et al., 2023) demonstrate effective
generalization across these modalities?

1.4 BRIEF OUTLINE OF THE THESIS

The structure of the rest of the thesis is as follows:

• Chapter 2: Related Work - A thorough literature review examines existing methods and tech-
nologies relevant to driver distraction detection. This chapter highlights the limitations of conven-
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tional supervised learning approaches and highlights the necessity for innovative unsupervised or
self-supervised learning models. It also highlights the practical challenges with DAA dataset and
identifies the research gaps this thesis aims to address.

• Chapter 3: Background - This chapter details the essential methodologies employed in this the-
sis. It explains the working principle of the HDBSCAN (Campello et al., 2013) clustering algorithm
and vision transformer Dosovitskiy et al. (2020) and introduces relevant mathematical functions
and terminology necessary for subsequent discussions. Furthermore, it explains the self-supervised
learning-based framework DINO (Caron et al., 2021), as well as the DINOv2 framework (Oquab
et al., 2023).

• Chapter 4: Proposed Methods - This chapter provides a comprehensive explanation of the inno-
vative dataloader implementation, as well as a methodology to compare it with the traditional dat-
aloader. This chapter also provides descriptions of the methodologies used in supervised learning-
based encoder experiments and self-supervised learning-based encoder experiments. Furthermore,
this chapter discusses the theoretical foundations of the selected methods and explains their rele-
vance in addressing the research goals outlined in the section 1.3.

• Chapter 5: Experiments and Results - This section delves into the experimental setup, highlight-
ing the datasets utilized and the hyperparameter choices made. It also presents the implementation
and results of the previously outlined methodologies across all experiments, offering a comprehen-
sive analysis of the findings. Moreover, it specifically addresses the research questions posed in
section 1.3.

• Chapter 6: Conclusions and Future Work - Concluding the thesis, this section integrates the
findings, and identifies potential areas for future research to foster continued advancements in the
field.
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Chapter 2

Related Work

Continuing from the previous chapter, where we discussed this thesis’s goals and their relevance to real-
world applications, this chapter provides a detailed literature review of existing distraction detection methods
in computer vision. It highlights the limitations of traditional supervised learning methods and underscores
the need for innovative unsupervised or self-supervised learning models. Additionally, this chapter addresses
research gaps and discusses practical issues associated with the DAA dataset.

2.1 SUPERVISED LEARNING BASED METHODS

Supervised learning is a prevalent approach in detecting driver distractions, leveraging annotated datasets to
train models to recognize distraction patterns. In the research work on driver distraction detection, Zhang
(2016) applied and compared the performance of Support Vector Machines (SVM) (Cortes & Vapnik,
1995) and Convolutional Neural Networks (CNN) (O’shea & Nash, 2015) algorithms using the State Farm
Dataset (SF) (Montoya et al., 2016) dataset which contains 10 classes for driver distraction detection. For
SVM (Cortes & Vapnik, 1995), Zhang (2016) utilized a Support Vector Classifier (SVC) model employing a
one-vs-one scheme to handle multi-class classification. The CNN (O’shea & Nash, 2015) approach involved
three models: a simple CNN based on the MNIST (Deng, 2012) digit classification task, a transfer learn-
ing model leveraging the pre-trained VGG-16 (Simonyan & Zisserman, 2014), and a modified VGG model
(VGG-GAP) (Zhou et al., 2016) with global average pooling layers. The CNN models outperformed the
SVM, with the simple CNN (O’shea & Nash, 2015) achieving an accuracy of 63.3%, VGG-16 (Simonyan
& Zisserman, 2014) reaching 90.2%, and VGG-GAP (Zhou et al., 2016) achieving 91.3%. The ensemble of
VGG-16 and VGG-GAP demonstrated superior performance with an accuracy of 92.6% (Zhang, 2016).

Okon & Meng (2017) used the AlexNet (Krizhevsky et al., 2012) architecture as a baseline model (Model
A) for the driver distraction detection task on the SF dataset (Montoya et al., 2016). AlexNet (Krizhevsky
et al., 2012) was chosen because of its demonstrated capacity to classify a variety of items, including phones
and driver’s hands, which are useful for detecting distracted driving behaviors. Model A achieved a clas-
sification test accuracy of 96.8% on the SF dataset (Montoya et al., 2016). To increase the model’s perfor-
mance even more, Okon & Meng (2017) introduced an upgraded version (Model B) that incorporated triplet
loss. This approach considerably improved classification accuracy, with Model B scoring 98.7% on the SF
dataset(Okon & Meng, 2017).

Majdi et al. (2018) proposed ‘Drive-Net’ a supervised learning method that combines a CNN (O’shea &
Nash, 2015) with a random decision forest (Ho, 1995) for driver distraction detection. Drive-Net’s (Majdi
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et al., 2018) CNN architecture is derived from a modified U-Net (Ronneberger et al., 2015) model, where the
up-convolution layers and the last two down-sampling layers are replaced by a 1x1 convolution layer. The
random decision forest (Bosch et al., 2007) in Drive-Net comprises multiple decision trees trained with ran-
domized data subsets and optimized by maximizing information gain at each node. Drive-Net was evaluated
against a Recurrent neural network (RNN) (Liang & Hu, 2015) and a Multi-layer perceptron (MLP) (Haykin,
2009) using the SF dataset (Montoya et al., 2016). Utilizing k=5 in k-fold cross-validation (Hastie et al.,
2009), Drive-Net achieved a 95% classification accuracy, outperforming RNN and MLP classifiers, which
scored 91.7% and 82%, respectively(Majdi et al., 2018).

Janet et al. (2020) used CNN to detect driver distractions using the SF dataset. Janet et al. (2020) tested
three models: a vanilla CNN, a vanilla CNN with data augmentation, and a CNN with transfer learning. The
vanilla CNN, which included three convolutional layers and three dense layers, had the highest accuracy
of 97.66%. The data-augmented vanilla CNN achieved an accuracy of 97.05%, while the transfer learning
model, which used VGG (Simonyan & Zisserman, 2014) and MobileNet (Howard et al., 2017) to shorten
training time, achieved 71.72% (Janet et al., 2020).

Dhakate & Dash (2020) introduced an ensemble of CNN for driver distraction detection on the SF dataset.
The proposed approach entails training several CNN models, including VGG-16, VGG-19 (Simonyan &
Zisserman, 2014), InceptionV3 (Szegedy et al., 2016), ResNet-50 (He et al., 2016a), and Xception (Chollet,
2017), by eliminating their final layers to extract feature vectors. These vectors are then combined using a
stacking ensemble technique to train a meta-classifier CNN, achieving a classification accuracy of 97%. The
ensemble stacking technique blends the outputs of different base-level models, enhancing overall prediction
accuracy. The best-performing ensemble model in (Dhakate & Dash, 2020) , a combination of ResNet-
50 (He et al., 2016a), Xception (Chollet, 2017), InceptionV3 (Szegedy et al., 2016), and VGG-19 (Simonyan
& Zisserman, 2014), achieved 97% accuracy, significantly outperforming a simpler ensemble model of
Xception and InceptionV3, which achieved 73% accuracy on the SF dataset (Dhakate & Dash, 2020).

Huang et al. (2020) developed a hybrid CNN framework (HCF) aimed at detecting distracted driving be-
haviors on the SF dataset. This framework integrated three pretrained models—ResNet50, Inception V3,
and Xception—to extract comprehensive behavior features through cooperative transfer learning. The ex-
tracted features were integrated into a detailed feature set, which is then classified using fully connected
layers. Huang et al. (2020) employed an improved dropout algorithm to prevent overfitting and class ac-
tivation mapping (CAM) to highlight key features. HCF framework achieved a classification accuracy of
96.74% on the SF dataset (Huang et al., 2020).

Qin et al. (2021) proposed D-HCNN, a CNN with decreasing filter fize, for real-time distracted driving
detection. Qin et al. (2021) focused on building a highly accurate, fast, and low parameter count based
model. As a result, D-HCNN uses only 0.76M parameters, and incorporates Histogram of Oriented Gradi-
ents (HOG) (Dalal & Triggs, 2005) images, L2 regularization, dropout, and batch normalization. D-HCNN
begins with large convolution filters to capture broad features and progressively reduces filter sizes for de-
tailed feature extraction. The D-HCNN architecture includes four convolutional layers with decreasing
filter sizes (12x12, 9x9, 6x6, 3x3), followed by ReLU (Agarap, 2018), max-pooling (Fukushima, 1988),
batch normalization (Ioffe & Szegedy, 2015), and dropout layers (Srivastava et al., 2014), concluding with
global average pooling (Lin et al., 2013) and softmax classification. Qin et al. (2021) converts RGB im-
ages to grayscale in the proposed D-HCNN model to mitigate lighting effects and reduce computation. It
also employs zero-mean normalization and random cropping for data augmentation. Evaluated on the AUC
Distracted Driver (AUCD2) (Abouelnaga et al., 2017a) and SF datasets, D-HCNN achieved accuracies of
95.59% and 99.87%, respectively.

Li et al. (2022b) introduced “OLCMNet” a lightweight octave-like CNN (Chen et al., 2019), for detecting
driver distraction. Li et al. (2022b) developed an octave-like convolution mixed block (OLCM) to efficiently
process feature maps by separating them into low and high-frequency branches, followed by global infor-
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mation fusion through squeeze-and-excitation (SE) (Hu et al., 2018) modules. The architecture consists of a
head, feature extraction, and final stage, with the OLCM block reducing spatial redundancy and improving
computational efficiency. Li et al. (2022b) also created Lilong Distracted Driving Behavior (LDDB) dataset,
containing 267,378 annotated images from on-road experiments. The proposed OLCMNet achieved 95.98%
accuracy when evaluated on the (LDDB) dataset and 89.53% accuracy on the SF dataset. Li et al. (2022b)
highlighted that squeeze-and-excitation module (Hu et al., 2018) in the final stage enhanced information
exchange between layers, resulting in higher classification accuracy.

The aforementioned research demonstrates the effectiveness of various supervised learning techniques and
CNN structures, including simple CNNs, transfer learning models, hybrid frameworks, and ensemble meth-
ods, in accurately detecting driver distractions on conventional datasets such as SF and AUCD2 (Abouelnaga
et al., 2017a). However, there are notable drawbacks linked to using supervised learning methods for the
driver distraction detection task.

Drawbacks of Supervised Learning Based Methods: The aforementioned research typically employs
supervised CNN models, which demand large amounts of labeled data for training. This labeling process
is resource-intensive, making it difficult to implement such models in real-world applications. Also these
methods rely on manually selected features combined with classifiers and suffer from non-universality and
poor adaptability to diverse driving scenarios (Li et al., 2022a; Zhang et al., 2023). The reliance on super-
vised frameworks, such as CNNs, limits their ability to generalize across different driving scenarios due to
the need for extensive reliable labeled data. Furthermore, while CNNs are effective at learning local image
features, they struggle with capturing the global context necessary for accurately detecting driver distractions
in complex real-world environments (Li et al., 2022a; Zhang et al., 2023). This narrow focus hinders their
overall perceptual ability, which is essential for comprehending spatial relationships and high-level semantic
information in driving scenes (Zhang et al., 2023). Additionally, the intricate nature of real-world driving
situations complicates the accurate labeling of data, thereby escalating the difficulty and cost of dataset cre-
ation . Overall, these factors contribute to the limited generalization performance and weak iterative ability
of current supervised CNN-based models (Zhang et al., 2023).

2.2 UNSUPERVISED AND SELF-SUPERVISED LEARNING BASED METHODS

This section presents solutions to the constraints of methods that rely on supervised learning and highlights
the advantages of unsupervised and self-supervised learning techniques for detecting driver distraction. Li
et al. (2022a) introduced a novel unsupervised deep learning technique called “Unsupervised deep learning
framework (UDL)” to address the constraints of current supervised methods in driver distraction detec-
tion. UDL harnesses vast quantities of unannotated data, hence increasing its applicability for industrial
purposes (Li et al., 2022a). In order to enhance generalization, the Simsiam (Chen & He, 2021) unsuper-
vised model was updated. Li et al. (2022a) incorporated a MLP design influenced by RepMLP (Ding et al.,
2021). This architecture combines both local and global feature extraction methods. This method improved
the model’s capacity to adjust to different driving situations. Li et al. (2022a) also incorporated residuals
into the projection head as a means of mitigating feature deterioration in multilayer architectures. This en-
hances the process of extracting deep features and improves the precision of detecting distractions (Li et al.,
2022a). A novel loss function was developed by integrating comparative learning (Chen et al., 2020a) with
the stop-gradient (Chen & He, 2021) technique. This loss function aims to improve the model’s ability to
learn robust features, hence boosting its generalization performance (Li et al., 2022a). The UDL technique
underwent testing using the SF dataset, and it achieved a notable accuracy rate of 97.38% during linear
evaluation. This performance surpassed that of other unsupervised models like SimSiam with ResNet50
backbone (86.29%), and SimCLR (Chen & He, 2021) with ResNet50 (94.32%) during linear evaluation (Li
et al., 2022a). The UDL method offers a substantial improvement in identifying driver distraction by utiliz-
ing unsupervised learning. The approach optimizes the utilization of unlabeled data, enhances the process
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of extracting features, and exhibits exceptional performance and flexibility, effectively overcoming the con-
straints of supervised models (Li et al., 2022a).

Self-supervised models outperform supervised models in capturing high-level semantic information by fo-
cusing feature attention on important discrimination regions more efficiently (Zhang et al., 2023). Zhang
et al. (2023) developed SL-DDBD, a self-supervised learning method for detecting driver distraction behav-
ior. The method uses a masked image modeling framework to reduce labeling costs. Zhang et al. (2023)
reconfigured the Swin Transformer (Liu et al., 2021) encoder, and utilized data augmentation strategies and
optimal random masking strategies in the SL-DDBD method. The method achieved 99.60% accuracy on the
SF dataset (Montoya et al., 2016), with pre-training and transfer learning for downstream driver distraction
task.

Despite the numerous advantages of unsupervised learning and self-supervised learning over supervised
learning, there have been limited research that have applied these methods for identifying driver distraction.
Therefore, it is imperative to transition towards these learning paradigms in order to develop more resilient,
dependable, and effective systems for detecting driver distraction.

2.3 DIFFERENT DATA MODALITIES

The success of machine learning models is significantly determined by the quality and characteristics of the
data. Similarly, the reliability of driver distraction detection systems relies on the integration of several data
modalities and their relationship, as well as their collective impact on overall effectiveness (Shajari et al.,
2023). Several academics have examined driver distraction detection using various perspectives of data
modalities. Physiological data offer direct insights into the driver’s condition and correlate strongly with
distraction levels (Reimer et al., 2011; Son & Park, 2021; Almahasneh et al., 2014; Lin et al., 2011). Visual
data, crucial for the success of supervised algorithms, includes tracking eye movement and body posture.
The precision of these models depends on the accuracy of data collection methods like electroencephalog-
raphy (EEG), which require adjustments to reduce interference from external physiological activities (Lin
et al., 2005; Lakshmi et al., 2014). Shajari et al. (2023) provided an overview of various types of data used in
driver distraction detection research. These include physiological data (such as brain activity, breathing rate,
skin conductivity and heart rate) and visual data (such as eye movement, body movement, and head move-
ment). Shajari et al. (2023) emphasized the importance of combining different data modalities to improve
the accuracy and reliability of driver distraction detection models.

2.4 ROLE OF DRIVE AND ACT DATASET:

The availability and quality of datasets are critical in exploring solutions to driver distraction. Moslemi et al.
(2021) summarized the research on driver distraction based on key datasets such as the SF (Montoya et al.,
2016), and the American University in Cairo (AUC) (Abouelnaga et al., 2017a) datasets. These datasets
vary in characteristics, presenting challenges like differing lighting conditions, camera angles, and the level
of detail in recorded actions, which can affect the models’ general applicability and effectiveness (Moslemi
et al., 2021).

The DAA dataset, as detailed in (Martin et al., 2019), is an innovative resource carefully assembled to
advance research in driver behavior detection during both manual and automated driving scenarios. This ex-
tensive dataset comprises over 9.6 million frames, encapsulating 12 hours of video footage. It systematically
captures a broad spectrum of distracting behaviors by integrating diverse types of data such as color, depth,
infrared, and 3D body pose information, as illustrated in Figure 2.1. Data collection employed six different
camera angles, utilizing five Near-Infrared (NIR) cameras and one Kinect v2 camera, the latter used for
capturing color images in three channels (RGB), as well as infrared and depth data. The NIR cameras in the
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dataset operate at a resolution of 1280 x 1024 pixels and a frame rate of 30 Hz, while the Microsoft Kinect
camera records color videos at 950 x 540 pixels with a 15 Hz frame rate and captures infrared and depth
data at 512 x 424 pixels at 30 Hz (Martin et al., 2019). The dataset was acquired using a stationary driving
simulator, which was selected to ensure participant safety and effectively simulate various driving scenar-
ios. This controlled environment mitigates risks associated with real-world driving and allows for consistent
data collection across diverse conditions. Furthermore, the dataset benefits from including a heterogeneous
group of participants varying in body size, driving experience, and familiarity with car automation technolo-
gies (Martin et al., 2019). This diversity enriches the dataset, capturing various driving behaviors and styles.
The DAA dataset is randomly segmented into three groups based on the identity of the driver. This splitting
approach ensures that data from the same individual is not present across multiple splits, preventing potential
overfitting or data leakage Martin et al. (2019). Specifically, Martin et al. (2019) state:

“for each split, we use the data of ten different identities for training, two for validation,
and two for testing.” (Martin et al., 2019)

By splitting the dataset in this manner, the authors aim to create a challenging benchmark that evaluates the
generalization capabilities of models trained on the DAA dataset. The three distinct splits allow for proper
training, validation, and testing procedures, enabling robust evaluation of driver behavior recognition and
driver distraction detection algorithms on unseen data from new individuals not present in the training set.

The DAA dataset uses a three-level hierarchy to detail driver interactions as depicted in the figures 2.3
and 2.1, providing a comprehensive framework for analyzing driver behavior under both manual and au-
tomated conditions. At the highest level of the hierarchy are the tasks, which outline broad scenarios that
participants encountered during the data collection. These tasks, such as entering the car and switching to
autonomous driving, set the context for the actions and are vital for simulating realistic driving environ-
ments. They also include potentially distracting situations anticipated with increased automation, like using
a laptop. The mid-level in this hierarchy consists of mid-level actions. These are fine-grained activities
that further break down the tasks into more specific behaviors but still maintain a clear semantic meaning.
For example, while a task might involve using a laptop, the mid-level actions detail the individual activities
involved, such as typing or browsing. At the most detailed level are atomic action units, which describe
basic interactions within the driving environment without long-term semantic implications. These units are
defined by a combination of action, object, and location—such as ‘reaching for a jacket in the left backseat’.
This level provides the fundamental building blocks of driver behavior, capturing the minute detail of every
interaction (Martin et al., 2019).

This hierarchical labeling not only enhances the granularity of behavioral analysis but also supports the
development of sophisticated models that can predict and interpret diverse driving behaviors in real-time. By
examining these interactions across different levels of abstraction, researchers can gain deeper insights into
how drivers respond to various driving conditions and tasks, contributing to safer automotive technologies.

2.4.1 ADVANTAGES OF THE DRIVE AND ACT DATASET:

The DAA dataset provides different modalities, i.e., Color, Infra-Red, Depth and 3D skeleton data, which
can be combined with each other to develop complex and reliable driver distraction detection systems. Given
the imbalanced nature of the DAA video dataset, Martin et al. (2019) segmented the DAA dataset into three
distinct partitions: Split 0, Split 1, and Split 2. They advocated for the training, evaluating, and testing deep
learning models across these three splits. They recommended that the resultant metrics, such as balanced
accuracy (Brodersen et al., 2010), be averaged to yield a statistically robust performance measure. This
approach is a proposed remedy to counter the dataset’s imbalance. This method of dataset division can be
effectively integrated with additional strategies to further mitigate the imbalance in the DAA dataset (Martin
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Figure 2.1: Drive and act dataset with its salient features. On the y-axis different modalities in the drive and
act dataset can be seen along with the hierarchical labeling scheme guided by the 12 predefined tasks that
each participant is subjected to perform in order to do the desired data collection. On the x-axis the time
stamps along with the tasks that each participant in performing with respect to the time is shown. This figure
also depicts the hierarchy in labeling where mid-level activities are fine grained activities and action, object
and location combined together forms a complete driver action. Source: (Martin et al., 2019).

et al., 2019). This approach facilitates robust model evaluation across different data segments, ensuring
statistical reliability in our findings.

2.4.2 CHALLENGES OF THE DRIVE AND ACT DATASET

The distribution of all 83 driver actions provided by the DAA video dataset is depicted in figure 2.3. Each
activity is captured for a duration of 3 seconds in one video sample (Martin et al., 2019). In the figure 2.3,
the y-axis depicts the frequency of each activity, while the x-axis represents the 83 activities. It is evident
from the figure 2.3 that an important obstacle in the DAA video dataset is the unequal distribution of
classes among all 83 activities including the 34 fine-grained activities (Martin et al., 2019). This disparity
is a substantial obstacle for creating models that can effectively identify rare but potentially vital driving
behaviors. It is crucial to address this issue in order to develop strong models that can accurately detect a
variety of actions, including some that are less frequent but may have greater potential for harm.

2.4.3 COMPARING DRIVE AND ACT TO OTHER DATASETS

The DAA dataset (Martin et al., 2019) is distinguished from current datasets such as NTU (Shahroudy et al.,
2016), HEH (Ohn-Bar & Trivedi, 2014), AUC (Abouelnaga et al., 2017b) and Kinetics (Carreira & Zisser-
man, 2017) by its large size, wide range of activities recorded, and inclusion of both manual and automated
driving situations for Action Recognition. For example, the AUC dataset (Abouelnaga et al., 2017b) con-
tains only 17,000 images, and the NTU dataset (Shahroudy et al., 2016) contains 4 million images, both of
which are significantly smaller than the over 9.6 million images provided by the DAA dataset. The Kinet-
ics (Carreira & Zisserman, 2017) contains more than 76 million images and is exception in terms of size,
however it only offers one camera view compared to 6 camera views in DAA dataset. This comprehensive
approach distinguishes it as a significant resource for the research community and highlights its potential
to promote breakthroughs in driver behavior identification systems. However, there is an urgent require-

21



Figure 2.2: Illustrative images depicting the action of working on a laptop from various views and using
different modalities. Source: (Martin et al., 2019).

ment for creative solutions to address the issues of class imbalance and to efficiently utilize the dataset’s
multi-modal and multi-view data. This dataset provides unparalleled opportunity for researchers in a broad
range of domains, particularly in tackling the issue of imbalanced datasets. It enables the DAA dataset to
be bench-marked against the most recent models in a variety of domains, including multi-class and binary
classification, view and modality generalization, and the creation of hybrid approaches that use multi-modal
technology. These cutting-edge technologies are essential for driver distraction detection, behavior track-
ing, and the creation of intelligent perceptual user interfaces. By leveraging cutting-edge technology across
multiple modalities, this dataset sets the path for major developments in understanding and increasing driver
safety and interaction.

In this thesis, we focus on two data modalities from the DAA dataset: Color and Infrared. An illustration
of these modalities, as seen in the action of working on a laptop, is shown in Figure 2.2. The DAA dataset,
derived from video captured with Kinect and NIR cameras, serves as the source of video data for this
research. The transformation of this video data into image data is accomplished by extracting frames, a
process guided by the dataset’s annotation files across all splits. This thesis explores the challenges posed by
the significant class imbalance found within these image datasets, a phenomenon that is often extrinsic He &
Garcia (2009). For example, categorizing actions from the DAA dataset into distracted versus non-distracted
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Figure 2.3: Distribution of Activities in the Drive and Act Video Dataset. The x-axis represents fine-grained
activities, followed by atomic action units, while the y-axis shows the number of video samples, ranging
from 0 to 10,000. Source: (Martin et al., 2019).

classes introduces an inherent imbalance due to varying sample sizes across the 34 fine-grained classes
present in the mid-level hierarchical labeling of the DAA dataset, and can be seen in the figure 2.3. Chapter 4
provides a detailed analysis of the image datasets and tackle the difficulties caused by imbalanced datasets
by proposing and explaining the ‘Clustered Feature Weighting’ algorithm.

2.4.4 KEY CHALLENGES POSED BY IMBALANCED DATASETS

Researchers such as (He & Garcia, 2009; Johnson & Khoshgoftaar, 2019a), summarised the key challenges
posed by imbalanced datasets as follows:

• Model Bias: Models trained on imbalanced data typically exhibit a bias towards the majority class,
leading to insufficient representation and prediction of minority classes (Rawat & Mishra, 2022;
He & Garcia, 2009).

• Poor Generalization: Models may generalize poorly on new, unseen data, especially for under-
represented classes (He & Garcia, 2009; Johnson & Khoshgoftaar, 2019a).

• Evaluation Challenges: Conventional accuracy measurements can be false as they may primarily
indicate the frequency of the dominant category rather than the actual prediction capacity of the
model in various situations (He & Garcia, 2009; Johnson & Khoshgoftaar, 2019a).

2.5 EXISTING SOLUTIONS TO IMBALANCED DATASETS

In machine learning, deep learning, and computer vision, learning from datasets that are imbalanced has
become a major problem that makes it hard to get high-performance algorithmic results. An imbalanced
dataset is characterized by an unequal distribution of classes, a topic that has been extensively explored in
the existing literature (Fernández et al., 2018), (He & Garcia, 2009). This imbalance can develop either
organically, as a result of the inherent differences in the frequency of data occurrence, as shown in medical
diagnostics, or extrinsically, due to external factors such as the methods used to collect data (Johnson &
Khoshgoftaar, 2019b), (He & Garcia, 2009)). According to Krawczyk (2016b), it is possible to achieve ap-
propriate outcomes regardless of class imbalance, as long as both classes for example in binary classification
are sufficiently represented and come from separate distributions (Johnson & Khoshgoftaar, 2019b).
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Within the field of image classification, extensive study has been conducted on the issue of imbalance in
both binary and multi-class frameworks, resulting in the development of numerous strategies for reducing
imbalance problems (He & Garcia, 2009; Chawla et al., 2002; Han et al., 2005; He et al., 2008). However,
the usefulness of these strategies varies depending on the application instance, with each approach having its
own set of advantages and drawbacks. Traditionally, research has concentrated mostly on machine learning
models (Akbani et al., 2004; Vilariño et al., 2005; Kang & Cho, 2006; Tang & Zhang, 2006). Nonetheless,
current advances in the field of computer vision, natural language processing (Chen et al., 2021) and deep
learning need a move toward investigating how deep learning models can tackle data imbalance problems
or how efficient they are when exposed to imbalanced data (Johnson & Khoshgoftaar, 2019b). According
to Japkowicz & Stephen (2002b), the severity of the imbalance problem depends on the degree of class im-
balance, the complexity of data representation, the volume of training data, and the classification technique
used (Kulkarni et al., 2021). The Imbalance Ratio (ImR) is a metric that measures the degree of class imbal-
ance. It is calculated as the ratio of the number of samples in the majority class to the number of samples in
the minority class (Fernández et al., 2018). With respect to binary image classification, the terms ‘majority
class’ or ‘negative class’ refer to the class with the most samples, whereas ‘minority class’ or ‘positive class’
implies the class with the fewest examples (Kulkarni et al., 2021). The same terminology can be transferred
to the domain of multi-class image classification problems.

In order to mitigate the consequences of imbalance, a number of measures are outlined in (Johnson &
Khoshgoftaar, 2019a). The following are the main solutions:

• Resampling Techniques: The dataset can be balanced by oversampling minority classes or under-
sampling majority classes (He & Garcia, 2009; Johnson & Khoshgoftaar, 2019a).

• Evaluation Metrics: Adoption of metrics such as the balanced accuracy score, precision, recall,
F-1 score, and the area under the Receiver Operating Curve (AUC-ROC) provide a more accurate
measure of model performance in the context of imbalanced data (Johnson & Khoshgoftaar, 2019a;
Wang et al., 2016).

• Class Weight Adjustments: During model training, adjusting class weights compensates for im-
balances by assigning greater importance to minority classes within the loss function (Johnson &
Khoshgoftaar, 2019a).

2.5.1 LEARNING FROM IMBALANCED DATASETS

The seminal work “Learning from Imbalanced Data” by He & Garcia (2009) not only offers a thorough
examination of the challenges posed by datasets characterized by under-representation and substantial class
imbalances, but also provides practical recommendations for addressing these issues. This study elucidates
the difficulties conventional machine learning techniques, which are typically designed for balanced class
distributions, encounter in the face of pronounced class disparities. It underscores the inadequacy of tra-
ditional metrics, such as overall accuracy (Grandini et al., 2020) or error rate, in accurately evaluating the
performance of algorithms in imbalanced learning scenarios. He & Garcia (2009) advocate for the adoption
of more sophisticated evaluation methods, such as receiver operating characteristics (ROC) curves (Fawcett,
2006), precision-recall curves (Giglioni et al., 2021), and cost curves (Giglioni et al., 2021), which provide
a more detailed insight into performance dynamics. Additionally, the paper highlights the challenges posed
by relative imbalances—common in real-world settings—and the significant learning obstacles introduced
by the scarcity of representative data for rare instances. Importantly, the authors acknowledge the complex-
ity of datasets and relative imbalances as key contributors to the degradation of classification performance,
further exacerbated by factors such as within-class imbalances and small disjuncts (He & Garcia, 2009).
The authors have presented a comprehensive categorization of solutions available for addressing the issue
of learning from imbalanced datasets, as depicted in figure 2.4. They have also provided detailed explana-
tions for each category and method. Additionally, they have offered criticisms of commonly used solutions,
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such as sampling methods designed to balance datasets. These critiques address the limitations of under-
sampling and oversampling, such as the possibility of losing important information and the potential for
overfitting. He & Garcia (2009) express significant criticism towards the Synthetic Minority Oversampling
Technique (SMOTE) (Chawla et al., 2002) method, highlighting its vulnerability to overgeneralization and
variance issues. Specifically, the SMOTE algorithm’s tendency to generate synthetic data without careful
consideration, which might unintentionally blur class boundaries or in other words obscure the distinction
between different classes as originally highlighted by (Wang & Japkowicz, 2004). The blurring of class
boundaries poses challenges for models in differentiating between classes due to the potential resemblance
or encroachment of synthetic data points onto the data space of the majority class, or the inaccurate repre-
sentation of the minority class. This could potentially diminish the efficacy of the model, as it may encounter
difficulties in appropriately categorizing novel instances that lie in close proximity to these indistinct bound-
aries (Wang & Japkowicz, 2004).

Additionally, Krawczyk (2016a) categorize the strategies for addressing imbalanced datasets into three prin-
cipal techniques. Initially, they examine data-level approaches, which involve adjustments to the sampling
process either to balance the class distribution or to eliminate problematic samples. The second category
encompasses algorithm-level strategies, which modify the core learning algorithms to better manage data
with skewed distributions, thereby reducing the bias towards majority class instances (Krawczyk, 2016a;
Fernández et al., 2018). Subsequently,Krawczyk (2016a) provide hybrid methods that combine the benefits
of both data-level and algorithm-level approaches (Chakrabarty & Biswas, 2020).

Fernández et al. (2018) explored the challenges associated with learning from imbalanced datasets thor-
oughly in Learning from Imbalanced Data Sets (Fernández et al., 2018). Similarly, Johnson & Khoshgoftaar
(2019a) provide a detailed review of methods to tackle class imbalance in machine learning, with an em-
phasis on deep learning techniques. Johnson & Khoshgoftaar (2019a) categorizes the various techniques,
defines appropriate assessment criteria for imbalanced datasets, and underscores the significance of both su-
pervised and unsupervised learning approaches, including those that incorporate transfer learning. Johnson
& Khoshgoftaar (2019a) notes that traditional metrics like accuracy can misleadingly reflect performance
in imbalanced contexts due to their susceptibility to the prevalence of the majority class (Fernández et al.,
2018; Johnson & Khoshgoftaar, 2019a). Instead, Balanced Accuracy (BA) (Brodersen et al., 2010) is rec-
ommended as it accounts for both the True Positive Rate (TPR) and the True Negative Rate (TNR), offering
a comprehensive measure of model efficacy across both majority and minority classes and mitigating the
inherent bias of simpler metrics (Wang et al., 2016). Johnson & Khoshgoftaar (2019a) identifies a gap in
the exploration of deep learning strategies for managing class imbalance, with most current methods, par-
ticularly those involving sampling or algorithmic modifications, falling within the domain of supervised
learning due to their reliance on labeled data for adjusting class distributions or refining learning algorithms
based on class-specific insights (Johnson & Khoshgoftaar, 2019a). The discourse also touches on innovative
deep learning techniques such as dynamic sampling, two-phase learning, and enhancements involving novel
loss functions and cost-sensitive learning (Johnson & Khoshgoftaar, 2019a). Additionally, the integration
of transfer learning with deep learning strategies to enhance model performance on imbalanced datasets is
discussed. Despite the prevalence of supervised methods, the field of unsupervised learning in relation to
class imbalance remains under-explored and represents a promising area for future research.

2.5.2 TRANSFER LEARNING AND CLUSTERING-BASED TECHNIQUES

Transfer learning is an advantageous approach in deep learning that can address the problem of class imbal-
ance. By initially training on diverse and wide datasets and then fine-tuning the model on the unbalanced
dataset, it is possible to strengthen the model’s capacity to generalize its knowledge to new scenarios and
enhance its overall performance (Johnson & Khoshgoftaar, 2019a). This approach is especially beneficial
for classes that have a restricted number of examples, as conventional learning methods may lead to below-
average model performance (Johnson & Khoshgoftaar, 2019a). The review paper discusses various methods,
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Imbalanced Learning
Techniques (He &
Garcia, 2009)

Sampling Techniques for Imbalanced Learning

Random Oversampling and Undersampling

Informed Undersampling

EasyEnsemble & BalanceCascade(Liu et al., 2008)

KNN based:(NearMiss-1) (NearMiss-2) (NearMiss-
3) (Most Distant) (Mani & Zhang, 2003)

One-sided selection (OSS) (Kubat et al., 1997)

Synthetic Sampling with Data Generation SMOTE (Chawla et al., 2002)

Adaptive Synthetic Sampling
Borderline-SMOTE (Han et al., 2005)

Adaptive Synthetic Sampling (He et al., 2008)

Sampling with Data Cleaning

Tomek links (Tomek, 1976)

OSS method (Kubat et al., 1997)

Condensed nearest neighbor rule and Tomek
Links (Batista et al., 2004)

Neighborhood Cleaning Rule (Laurikkala, 2001)

SMOTE + ENN and SMOTE + Tomek (Batista
et al., 2004)

Cluster-Based Sampling Cluster-based oversampling (Jo & Japkowicz,
2004)

Integration of Sampling and Boosting

SMOTE-Boost (Chawla et al., 2003)

Data-Boost-IM (Guo & Viktor, 2004)

JOUS-Boost (Mease et al., 2007)

Cost-Sensitive Approaches

Cost-Sensitive Learning Framework
Translation theorem (Zadrozny et al., 2003)

Metacost framework (Domingos, 1999)

Cost-Sensitive Dataspace Weighting with Adaptive
Boosting

(AdaC1) (AdaC2) (AdaC3) (Sun et al., 2007)

AdaCost (Fan et al., 1999)

Cost-Sensitive Decision Trees and Neural Net-
works

Kernel-Based Methods

Kernel-Based Learning Framework SVM (Japkowicz & Stephen, 2002a)

Kernel Methods with Sampling

SMOTE with Different Costs (Akbani et al., 2004)

Ensembles of over/undersampled SVM (Vilariño
et al., 2005) (Kang & Cho, 2006) (Liu et al.,
2006) (Wang & Japkowicz, 2008)

Granular SVM—Repetitive Undersampling (Tang
& Zhang, 2006)

Kernel Modification Methods

Kernel classifier construction (Hong et al., 2007)

(Boundary movement) (Biased penalties) (Class-
boundary alignment) (Wu & Chang, 2003)

Kernel-boundary alignment (Wu & Chang,
2004) (Wu & Chang, 2005)

k-category Proximal SVM with Newton refine-
ment (Fung & Mangasarian, 2001)

Support cluster machines (Yuan et al., 2006)

Kernel neural gas for imbalanced clustering (Qin
& Suganthan, 2004)

(P2PKNNC algorithm) (P2P communication
paradigm) (Yu & Yu, 2007)

Active Learning Methods Simple active learning heuristic (Doucette & Hey-
wood, 2008)

Supplementary Approaches

One-class SVM (Raskutti & Kowalczyk, 2004)

Autoassociator method (Japkowicz,
2001) (Manevitz & Yousef, 2007) (Japkowicz
et al., 2000) (Japkowicz et al., 1995)

Ensemble knowledge for imbalance sample sets
(eKISS) (Tan et al., 2003)

Figure 2.4: A flow chart showing the classification of Imbalanced Learning Techniques proposed by He &
Garcia (2009).

26



such as category centers (CC) proposed by Zhang et al. (2018), Large Margin Local Embedding (LMLE)
introduced by Huang et al. (2016), and Deep Over Sampling (DOS) developed by Ando & Huang (2017).
These methods utilize hybrid approaches that combine transfer learning, deep feature representations, and
k-nearest neighbors to tackle imbalanced datasets (Johnson & Khoshgoftaar, 2019a).

Clustering-based methods have become a sophisticated approach to tackle class imbalance by focusing on
grouping instances into clusters before applying subsampling methods. This strategy aims to preserve
the integrity of information while simultaneously providing a more equitable distribution among differ-
ent classes (Munguı́a Mondragón et al., 2023). More precisely, algorithms such as K-means (Kaufman &
Rousseeuw, 2009) and Clustering Large Applications (CLARA) (Kaufman & Rousseeuw, 2009) aid in the
creation of clusters within classes by choosing instances that are both representative and diverse. A signifi-
cant progress in this field is the utilization of density-based clustering methods, specifically Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996) and Hierarchical Density-
Based Spatial Clustering of Applications with Noise (HDBSCAN) (Campello et al., 2013). These algo-
rithms excel at handling datasets with varying sizes, shapes, and densities by detecting regions with high
population density. This allows for reducing the size of the majority class without significant loss of infor-
mation (Munguı́a Mondragón et al., 2023).

Munguı́a Mondragón et al. (2023) makes a comprehensive contribution by presenting a new density-
based undersampling technique that exploits the capabilities of DBSCAN and HDBSCAN, in addition to
an improved Multi-class imbalanced data classification using SMOTE and cluster-based undersampling
(SCUT) (Agrawal et al., 2015) algorithm. This approach, when used with imbalanced and multi-class hy-
perspectral remote sensing images, employs geometric mean values and Friedman’s test (Friedman, 1940)
to thoroughly assess its effectiveness. The results emphasize the effectiveness of density-based clustering
methods in addressing the difficulties posed by severe class imbalances, representing a notable shift from
conventional strategies (Munguı́a Mondragón et al., 2023).

Munguı́a Mondragón et al. (2023) introduces methodological advancements that suggest a more precise
equilibrium between undersampling and oversampling, depending on the average size of each class sample.
This strategy effectively combines density-based clustering with the SCUT method to dynamically modify
class sizes. It utilizes DBSCAN (Ester et al., 1996) or HDBSCAN (Campello et al., 2013) for classes that
are above the average and employs SMOTE (Chawla et al., 2002) for classes that are below the average. This
strategy seeks to achieve both a more equitable representation of classes and improved classifier performance
by utilizing geometric mean values as a measure of success. The suggested method effectively addresses
the issue of class imbalance by deliberately removing instances from the majority class using density-based
clustering and increasing the representation of the minority class through SMOTE. The empirical validation
of this method, which shows significant improvements in the accuracy of classifying highly unbalanced
datasets, highlights the potential of combining density-based clustering with sampling approaches as an
effective solution to the challenges caused by class imbalance.

The research by Munguı́a Mondragón et al. (2023) contends that conventional oversampling techniques such
as SMOTE and its variations aim to achieve balance in the dataset, but they may not adequately address the
nuances of class imbalance. On the other hand, clustering methods, especially those that rely on density,
provide a strong and reliable alternative.

Research Gap: The emergence of Vision Transformer (ViT) models has had a tremendous impact on the
field of computer vision. Despite this advancement, the use of these models to address the common issue of
dataset imbalance has not been widely examined. This oversight signifies a crucial research gap, neglecting
the potential of ViT models to serve as general-purpose tools for extracting intricate image features. Vision
Transformers are distinguished by their ability to assimilate complex visual representations, which provides
access to a rich feature space for developing novel techniques to handle the imbalanced learning challenge.
This feature space, strengthened by training on large and diverse image datasets, has a wide range of visual
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properties. Such a collection of information is useful in finding both tiny differences and similarities be-
tween images, presenting a viable solution to the imbalance problem. It offers a thorough understanding and
representation of minority classes, which are typically excluded and ignored by standard models. The com-
prehensive representation offered by ViT models opens up opportunities for the advancement of sampling
strategies, augmentation techniques, and customized loss functions that are particularly crafted to address
the distinct difficulties presented by unbalanced datasets. By innovating techniques that exploit the feature
space of Vision Transformers (Dosovitskiy et al., 2020), there lies the potential to inaugurate a new phase
of progress in deep learning. This advancement is particularly crucial in achieving equitable and consistent
model performance across all class categories within imbalanced datasets.

Within the context of this thesis, Chapter 4 focuses on introducing and explaining such a novel sampling
technique called “ClusteredFeatureWeighting” that combines the effective use of feature space of ViT using
Transfer Learning, Density-Based Clustering, and Weighted Random Sampling. This novel approach is
specifically tailored to rectify the imbalance dataset problem inherent in the drive and act dataset (Martin
et al., 2019). Subsequent chapters, particularly Chapters 3 and 4, provide a comprehensive explanation of
the working principles and experimental methodologies. Chapter 5 presents the results after each experiment
by employing the methodology explained in the chapter 4.
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Chapter 3

Background

We looked at the study on driver distraction detection and dataset imbalance in the last chapter. Following
the research gaps identified in the previous section and the recommended research alternatives, this chap-
ter will look at the background knowledge and working principles of the algorithms and models employed
in this thesis to address the research problems. It covers the working principle of the HDBSCAN clus-
tering algorithm (Campello et al., 2013) and vision transformer Dosovitskiy et al. (2020). Also discussed
are the Self-Distillation with no labels (DINO) (Caron et al., 2021) framework and it’s improved version
DINOv2 (Oquab et al., 2023) for training vision transformer models.

3.1 HDBSCAN CLUSTERING ALGORITHM

Clusters can be represented as dense regions in the data space, divided by sparse areas. Density-based clus-
tering algorithms use this strategy to identify non-spherical groupings (Han et al., 2011). Density-based
clustering detects clusters in data by separating regions of high and low point density (Han et al., 2011).
DBSCAN (Ester et al., 1996) is a type of density based clustering algorithm which groups points that are
closely packed together, marking points that are in low-density regions as noise. This method is partic-
ularly effective for discovering clusters of arbitrary shapes and sizes in datasets with noise (scikit-learn
contrib/hdbscan, 2024). While DBSCAN (Ester et al., 1996) is powerful, it has limitations. It requires
two parameters: eps (maximum distance between neighbors) and min samples (minimum number of points
to form a dense region) (Ester et al., 1996; scikit-learn contrib/hdbscan, 2024). Selecting suitable values
for these variables might prove problematic, especially for datasets with varying density (scikit-learn con-
trib/hdbscan, 2024). Moreover, DBSCAN (Ester et al., 1996) does not inherently provide a way to explore
the hierarchical structure of clusters (scikit-learn contrib/hdbscan, 2024).

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) (Campello et al.,
2013) extends DBSCAN (Ester et al., 1996) by addressing these limitations. It combines density-based
clustering with hierarchical clustering, allowing it to handle data with varying density more effectively and
revealing a hierarchy of clusters (scikit-learn contrib/hdbscan, 2024).
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Working of HDBSCAN algorithm: Based on the (Campello et al., 2013; 2015) papers, the working of
HDBSCAN algorithm can be divided into following steps:

1. Transforming the Space:
• HDBSCAN begins by computing the core distance for each point, which represents the dis-

tance to its k-th nearest neighbor (where k is defined by the min samples parameter).
• It then calculates the mutual reachability distance between pairs of points. This distance ac-

counts for the core distance of the points, ensuring clusters can be identified in regions with
varying density.

2. Building the Minimum Spanning Tree (MST):
• Using the mutual reachability distances, HDBSCAN constructs a minimum spanning tree

(MST). This tree connects all points in the dataset with the shortest possible total distance,
ensuring every point is reachable from any other point (scikit-learn contrib/hdbscan, 2024).

3. Condensing the Tree:
• The MST is condensed into a hierarchy of connected components by progressively removing

the edges with the longest mutual reachability distances. This process reveals a tree structure,
or dendrogram, that represents clusters at different density levels (scikit-learn contrib/hdbscan,
2024).

4. Extracting Stable Clusters:
• From the dendrogram, HDBSCAN uses the Excess of Mass (EOM) method to extract clusters.

EOM identifies the most stable clusters by measuring their persistence across different density
levels. Stable clusters are those that remain consistent over a range of scales, indicating they
are meaningful groupings of data points (scikit-learn contrib/hdbscan, 2024).

5. Outlier Detection:
• Points that do not belong to any stable cluster are labeled as noise. These points are in

low-density regions and do not fulfill the requirements to be considered as part of a clus-
ter (Campello et al., 2013; 2015).

Key Parameters of HDBSCAN:

• Minimum Cluster Size (e.g., 25): Sets the smallest allowable size for a cluster. Clusters smaller
than this are considered noise.

• min samples (e.g., 1): Specifies the minimum number of points required within a neighborhood for
a point to be classified as a core point, hence affecting the computations of local density (Campello
et al., 2013; 2015; scikit-learn contrib/hdbscan, 2024).

• cluster selection epsilon (0.0): Controls the sensitivity for cluster formation. A value of 0.0 ap-
plies the strictest criteria.

• metric (‘euclidean’): Specifies the distance metric, with ‘euclidean’ being the default for calculat-
ing distances between points (scikit-learn contrib/hdbscan, 2024).

• cluster selection method (‘eom’): Determines how clusters are selected from the hierarchical tree,
with ‘eom’ favoring stable, persistent clusters.

HDBSCAN (Campello et al., 2013) improves upon traditional density-based clustering by combining it with
hierarchical clustering techniques. It enables the HDBSCAN algorithm to efficiently process datasets with
different levels of density, detect clusters of any shape, and identify significant clusters more reliably than
techniques such as DBSCAN (Ester et al., 1996). Through its use of core distances, mutual reachability
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distances, and hierarchical extraction methods, HDBSCAN (Campello et al., 2013) provides a powerful tool
for clustering complex data. While HDBSCAN is relatively less affected by parameter settings compared
to other clustering algorithms, it still necessitates the configuration of parameters such as ‘min cluster size’
and ‘min samples’, which can impact the clustering results and is a limitation of this algorithm (scikit-learn
contrib/hdbscan, 2024; Campello et al., 2015).

3.2 VISION TRANSFORMER

The ViT (Dosovitskiy et al., 2020) has transformed the computer vision domain by demonstrating that
CNNs (O’shea & Nash, 2015) are not necessary for achieving high performance in image classification
tasks. ViT applies the Transformer architecture (Vaswani et al., 2017), originally intended for sequential
data in Natural Language Processing (NLP) (Eisenstein, 2019), to process images by considering them as
sequences of patches, akin to tokens in text.

Figure 3.1: Vision Transformer Architecture from (Dosovitskiy et al., 2020).

Vision Transformer Architecture: The Vision transformer architecture consists of key elements includ-
ing image patches, patch and positional embedding, learnable class embedding, Transformer Encoder, and
MLP Head as shown in figure 3.1. Image patches are embedded linearly, with position embeddings for
spatial information preservation. The transformer encoder is composed of layers that alternate between
multi-headed self-attention and MLP blocks. LayerNorm (LN) is applied before each block and residual
connections are applied after each block. The MLP blocks have two layers with a GELU non-linearity to
maintain local and translational equivariance. The multi-headed self-attention layers record global depen-
dencies across the image (Dosovitskiy et al., 2020). The MLP Head converts learned features into class
output, sometimes it is also referred as the classifier head in classification tasks.
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Mathematical Functions and Terminology: This paragraph adheres to the notations and conventions
established in the Vision Transformer (ViT) paper by Dosovitskiy et al. (2020). All descriptions and mathe-
matical formulations presented herein are based on those detailed in the original paper.

The process includes transforming image patches into embeddings, adding positional embeddings and a
class token, and then passing them through the Transformer encoder, which entails a sequence of essential
mathematical operations necessary for understanding the functionality of ViT. The components include lin-
ear transformations for patch embedding, softmax normalization in the self-attention mechanism, and the
GELU (Hendrycks & Gimpel, 2016) non-linearity in MLP blocks.

Dosovitskiy et al. (2020) considered an RGB image x with dimensions H × W × C, where H represents
Height, W represents Width, and C represents the color channel of the image. The image has a resolution of
H ×W . Dosovitskiy et al. (2020) converted this image into a series of 2D image patches by dividing it into
N patches with a resolution of P 2.

Dosovitskiy et al. (2020) mathematically transformed an image x into a 2D sequence of image patches xp,
as shown in equation 3.1.

x ∈ RH×W×C → xp ∈ RN×(P 2×C) (3.1)

The lowercase letter “p” represents the patch. The number of patches, N, obtained from this transformation
is determined by dividing the resolution of the original image by the resolution of each patch. Dosovitskiy
et al. (2020) expressed N as the product of H and W divided by P squared as given in equation 3.2.

N =
H ×W

P 2
(3.2)

Afterwards, Dosovitskiy et al. (2020) turned the two-dimensional patch sequence into a one-dimensional
sequence using linear projections to align with the input requirements of the conventional Transformer en-
coder (Vaswani et al., 2017), which only accepts one-dimensional token embeddings. The linearly projected
embedding is referred to as Patch embedding and is trainable.

According to Dosovitskiy et al. (2020), the initial patch embeddings and positional encoding of an input
image in the Vision Transformer architecture can be defined as:

z0 =
[
xclass;x

1
pE;x2

pE; · · · ;xN
p E

]
+Epos, E ∈ R(P

2·C)×D, Epos ∈ R(N+1)×D
(3.3)

In equation 3.3, z0 is the initial embedding matrix input into the Transformer encoder. The image is initially
divided into N flattened 2D patches, indicated by xi

p, where i denotes the count of patches from 1 to N.
These patches are then linearly projected into a D-dimensional embedding space using a trainable matrix
E (Dosovitskiy et al., 2020). The embedding matrix E is shared by all patches, representing the idea that
each patch is equivalent to a ‘word’ in NLP tasks. Position embeddings Epos are used to maintain positional
information, which is crucial given the Transformer’s permutation invariance (Dosovitskiy et al., 2020).
A specific class embedding xclass is prepended to the sequence to serve as a proxy for the overall image
representation.

Each Transformer encoder layer comprises a self-attention mechanism Vaswani et al. (2017), succeeded by
a MLP. Mathematically, the self-attention mechanism along with residual connection (He et al., 2016b) for
layer ℓ is represented as:

z′ℓ = MSA(LN (zℓ−1)) + zℓ−1, ℓ = 1 . . . L (3.4)
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In the vision transformer architecture, ℓ is a number between 1 and L, where L is the maximum number of
stacked transformer encoders. The implementation of the multiheaded self-attention (MSA) function on the
layer-normalized embeddings from the preceding layer zℓ−1, is illustrated in equation 3.4. Subsequently,
the result of this combined operation, is added in zℓ−1 as a residual connection (He et al., 2016b), thereby
enabling gradient flow (Dosovitskiy et al., 2020). The self-attention mechanism’s output z′ℓ is subsequently
passed through a MLP in the Transformer encoder block as described in equation 3.5:

zℓ = MLP (LN (z′ℓ)) + z′ℓ, ℓ = 1 . . . L (3.5)

The output of the Transformer encoder block is the result of combining the output of the MLP with the
output of residual connection (Dosovitskiy et al., 2020). The MLP comprises two dense layers with a
GELU (Hendrycks & Gimpel, 2016) activation function.

Ultimately, equation 3.6 produces the ultimate output representation of the image, which is subsequently
employed for classification purposes.

y = LN
(
z0L

)
(3.6)

The final image representation, denoted as y, is derived by applying layer normalization (Ba et al., 2016) to
the layer that corresponds to the classification token. This representation y contains the aggregated informa-
tion from all patches and their interactions as distilled through the various Transformer layers. The Vision
Transformer’s image classification approach replaces traditional convolutional operations with mechanisms
that consider image patches as sequences of data points, akin to words in a sentence. This enables the model
to learn contextual relationships throughout the image (Dosovitskiy et al., 2020).

Multi-headed Self-Attention Mechanism: The primary functionality of ViT relies on self-attention, en-
abling each patch to attend to every other patch in the image. This mechanism allows the model to prioritize
the most pertinent regions of the image for the given task. The multi-headed self-attention Vaswani et al.
(2017) (MHSA) improves the model’s ability to understand complex spatial structures and connections by
recording several visual components at the same time. The detailed process of self-attention mechanism
can be found in paper Vaswani et al. (2017), while the mathematical explanation of the Multi-headed Self-
Attention mechanism is given in Appendix A of the Vision transformer paper Dosovitskiy et al. (2020).

3.3 EVOLUTION OF SELF-SUPERVISED LEARNING IN VISION TRANSFORMERS:
FROM DINO TO DINOV2

DINO stands for “Self-Distillation with NO labels” (Caron et al., 2021). It is an innovative advancement
in self-supervised learning for vision transformers. The DINO framework takes a novel approach to self-
supervised learning by merging elements of self-training and knowledge distillation, which have previously
been employed to increase feature quality by propagating annotations to unlabeled datasets (Caron et al.,
2021; Hinton et al., 2015). Traditionally, knowledge distillation is teaching a smaller, simpler student net-
work to mimic the behavior of a larger, pre-trained teacher network, therefore compressing knowledge into
a more efficient model (Buciluǎ et al., 2006; Kim & Kim, 2017; Caron et al., 2021). DINO framework inno-
vates by converting this method into what is known as “self-distillation,” in which both the student and the
teacher are trained concurrently during the learning phase, with no labeled data. In self-supervised vision
transformers, label propagation involves both hard and soft assignments (Lee et al., 2013; Xu et al., 2020;
Yalniz et al., 2019; Xie et al., 2020), with soft assignments (Xie et al., 2020) being particularly matched
with knowledge distillation concepts (Buciluǎ et al., 2006; Hinton et al., 2015). This strategy has usually
concentrated on model compression by training smaller networks to mimic the outputs of bigger ones, as
proven by Xie et al. (2020).
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DINO applies these notions to a self-supervised situation in which no true labels are available. Unlike prior
techniques, which used a pre-trained, fixed teacher (Chen et al., 2020b; Fang et al., 2021; Shen et al., 2021;
Noroozi et al., 2018), DINO framework dynamically constructs the teacher during training, making knowl-
edge distillation an inherent component of the learning objective rather than a post-processing step (Caron
et al., 2021). This approach is similar to codistillation (Anil et al., 2018), in which both the student and
teacher networks share the same architecture; however, in DINO, the teacher network is updated using an
exponential moving average (Polyak & Juditsky, 1992) of the student’s parameters rather than mutual distil-
lation as depicted in the figure 3.2 (Caron et al., 2021).

Figure 3.2: A diagram illustrating DINO with one image pair (x1, x2). The image undergoes two random
transformations and is passed to both student and teacher networks, which have the same architecture but
different parameters. The teacher’s output is centered using the batch mean. Both outputs are normalized
with temperature softmax and compared using cross-entropy loss. A stop-gradient operator is applied to
the teacher, and its parameters are updated using an exponential moving average of the student’s parame-
ters (Caron et al., 2021).

The implementation of DINO, as depicted in the figure 3.2, employs two different random transformations
of an input image, extracted from a single input image. These views are then processed by student and
teacher networks, which have the same architecture but different parameters. The networks generate K-
dimensional features that are normalized using a softmax function controlled by a temperature parameter.
The similarity between these features is evaluated using cross-entropy loss. A stop-gradient operation is
applied to the teacher to ensure that only the student is directly trained, enhancing the focus on feature
generation without direct label dependence. For a comprehensive understanding of the implementation,
interested readers can refer to section 3 of the DINO paper (Caron et al., 2021), which provides a complete
mathematical foundation and explanation. This thesis focuses specifically on utilizing a pre-trained self-
supervised vision transformer encoder to detect driver distraction on the DAA image dataset. The evaluation
procedure used is a linear evaluation protocol.

The DINO architecture has significant implications for Vision Transformers (Dosovitskiy et al., 2020) since
it has the ability to provide novel qualities to ViTs, which have primarily been compared to classical CNNs.
The DINO framework aims to assess the potential benefits of self-supervised ViTs, including the ability to
explicitly describe semantic segmentation and perform successful k-NN classification directly from the fea-
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tures Caron et al. (2021). In contrast to supervised ViTs and classical CNNs, which do not naturally prioritize
certain characteristics, DINO approach stands out and provides remarkable accuracy on ImageNet (Rus-
sakovsky et al., 2015; Ridnik et al., 2021) dataset without the need for finetuning Caron et al. (2021).

Self-Distillation with NO labels Version 2 (DINOv2): Building on the fundamental ideas of DINO Caron
et al. (2021), the architecture and training technique are enhanced and refined in various ways in DI-
NOv2 Oquab et al. (2023). The architecture of DINOv2 signifies a significant progression in self-supervised
learning in the field of computer vision. It integrates discriminative learning techniques to enhance feature
extraction and improve model performance. The DINOv2 architecture is centered around a dual approach
that consists of a student and a teacher network as introduced intially in the DINO paper Caron et al. (2021).
This modified approach utilizes self-distillation techniques to promote strong feature learning without the
need for labeled data Oquab et al. (2023).

The fundamental enhancements in the DINOv2 architecture consist of:

• Discriminative Self-supervised Pre-training: DINOv2 utilizes a novel combination of loss
functions from DINO Caron et al. (2021) and Image bert pre-training with online tokenizer
(iBOT) (Zhou et al., 2021), integrated with the centering mechanism from Swapping Assignments
between Views (SwAV) (Caron et al., 2020). This configuration aids in stabilizing the feature space,
preventing the trivial solutions often encountered in self-supervised learning scenarios (Oquab
et al., 2023).

• Dual-Objective Learning:

– Image-level Objective Caron et al. (2021): At this level, DINOv2 framework applies a cross-
entropy loss between the outputs of the student and the teacher networks, derived from the
class token of a Vision Transformer (Dosovitskiy et al., 2020) model. The outputs are ob-
tained from different crops of the same image, encouraging the model to recognize and learn
consistent features across varied perspectives and scales (Caron et al., 2021; Oquab et al.,
2023).

– Patch-level Objective (Zhou et al., 2021): This objective introduces variability in the input
by masking some patches presented to the student network, but not to the teacher. A cross-
entropy loss is then computed between the patch features from both networks. This added
complexity ensures the model captures detailed textural and structural information at finer
granularities, thus enhancing its overall sensitivity to image content (Oquab et al., 2023).

• Adaptive Weight Management: To optimize learning at different scales, DINOv2 employs a
strategy of untying the head weights for the image-level and patch-level objectives. This approach
corrects the tendency of the model to underfit at the patch level or overfit at the image level, thereby
balancing the learning focus and improving outcomes at both scales (Oquab et al., 2023).

• Sinkhorn-Knopp Centering (Caron et al., 2020): The DINOv2 architecture adopts the Sinkhorn-
Knopp (SK) algorithm for batch normalization (Caron et al., 2020) from SwAV framework, a
method initially suggested for the DINO and iBOT framework by Ruan et al. (2022). This al-
gorithm, recommended for its efficiency in normalizing features, replaces the softmax centering
typically used in DINO and iBOT setups (Ruan et al., 2022). The SK centering is applied in three
iterative steps, mainly for the teacher network, while the student employs softmax normalization.
This element helps in maintaining a uniform distribution of features across batches, crucial for
consistent self-supervised learning (Oquab et al., 2023).

• Regularization and High-Resolution Training Phase: In addition to these structural components,
DINOv2 incorporates KoLeo regularizer (Sablayrolles et al., 2018) to ensure a diverse spread of
features across the learning process and introduces a short high-resolution training phase. These
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enhancements allow the model to adapt better to high-resolution tasks, which are particularly rele-
vant in contexts such as detailed image analysis, segmentation, and object detection (Oquab et al.,
2023).

The primary distinctions between DINO and DINOv2 are outlined below:

Loss Function Integration:

• DINO: Introduced knowledge distillation emphasizing feature invariance across various perspec-
tives of the same image (Caron et al., 2021).

• DINOv2: Integrated a combination of DINO and iBOT loss functions, along with the centering
techniques from SwAV, to stabilize the learning process further (Oquab et al., 2023).

Objective Functions:

• DINO: Primarily focused on image-level objectives to encourage feature learning across different
augmentations of input data (Caron et al., 2021).

• DINOv2: Introduced patch-level objectives alongside image-level objectives, involving masking
some image patches for the student but not for the teacher, adding complexity and encouraging
more detailed feature learning (Oquab et al., 2023).

Weight Management:

• DINO: Did not explicitly address weight tying between different objectives.
• DINOv2: Improved the architecture by untying the weights between image-level and patch-level

objectives, enhancing model performance across different scales and preventing overfitting or un-
derfitting (Oquab et al., 2023).

Evaluation Protocols for SSL Models The evaluation of self-supervised learning SSL models, such as
our DINOv2-based ViT encoder (Oquab et al., 2023), deviates substantially from conventional supervised
approaches. The methods of evaluation for SSL models are essential for determining their effectiveness in
downstream tasks like driver distraction detection, as these models are generally evaluated based on their
capacity to generate valuable representations without direct supervision.

Types of SSL Evaluation:

1. K-Nearest Neighbors (KNN): In the context of SSL, a KNN classifier (Mucherino et al., 2009)
uses l2-normalized features extracted by the model to classify new images based on the closest
training examples in feature space. This method is advantageous due to its simplicity, speed, and
minimal hyperparameter tuning, making it an ideal quick benchmark for SSL models (Caron et al.,
2021; Balestriero et al., 2023).

2. Linear Evaluation: The most popular method for evaluating SSL models is the linear evaluation,
or linear probing. This method tests the quality of the backbone directly, as the linear classifier
has limited capacity to adjust to the data, thereby providing a clear signal of the representational
power of the underlying parameters. Typically, this involves appending a linear layer to the frozen
backbone and optimizing it for several epochs (usually around 100), which is computationally
efficient (Zhang et al., 2016; 2017; Balestriero et al., 2023; Bao et al., 2021).

3. Full Fine-Tuning: This method involves training the entire model (both the pre-trained backbone
and the newly added classifier) on a downstream task such as driver distraction detection. It is the
most thorough evaluation, allowing the model to fully adapt to the new task. However, it is also the
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most computationally expensive and may not always correlate with the strength of the initial SSL
pre-training, especially in scenarios where the downstream task is substantially different from the
pre-training setup (He et al., 2021; Balestriero et al., 2023).

4. Multi-Layer Perceptron (MLP) Probing: While less common, MLP probing involves adding a
small multi-layer perceptron on top of the frozen features. This can reveal whether the features are
non-linearly separable, which may be masked by simpler linear probing. However, this approach is
more prone to overfitting and typically requires careful management of model capacity and training
duration (Bordes et al., 2023; Balestriero et al., 2023).
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Chapter 4

Proposed Methods

In Chapter 3, we explored clustering, vision transformers, and self-supervised learning frameworks like
DINO and DINOv2, including their evaluation in various scenarios. Building on that, Chapter 4 outlines
our proposed methods and the steps involved in our experiments. We start with how we created our image
datasets using annotation files provided for DAA video dataset, including addressing dataset imbalance and
relevant statistics. We introduce a new dataloader designed specifically for imbalanced datasets and describe
our clustering process. The chapter also explains our methodologies for comparing new dataloader with
traditional one and training and evaluating our models. Additionally, we provide necessary mathematical
formulations to aid in understanding our evaluation principles, and we outline our experimental goals, which
will be tested in the following chapter.

4.1 IMAGE DATASET GENERATION

This section explains how we created image datasets from the DAA video dataset (Martin et al., 2019) using
the provided annotation files. First, we’ll examine the structure of these annotation files to understand how to
extract frames from the DAA videos. We’ll then go over the data pre-processing steps and frame extraction
process. By the end of this section, we’ll have prepared the extracted image datasets for an analysis of any
imbalances in the next section.

Dataset Annotation Details: The annotation files are integral for indexing and extracting relevant frames.
An example of such a file, “midlevel.chunks 90.split 0.train.csv”, provided by DAA (Martin et al., 2019)
video dataset, is depicted in the figure 4.1. It includes headers like participant id, file id, annotation id,
frame start, frame end, activity, and chunk id. For instance, entries in this file indicate specific activities
such as ‘closing door outside’ and ‘opening door outside’, with precise frame ranges provided for effective
localization of the activity within the video because each activity is captured for 3 seconds and corresponds
to 1 video sample (Martin et al., 2019).

Data Preprocessing and Frame Extraction: The methodology’s initial step involves extracting image
frames from the video files of the DAA dataset. This process forms foundational image datasets correspond-
ing to each considered modality and camera view. Table 4.1 contains information about different modalities
and views offered by DAA dataset Martin et al. (2019). Specifically, two camera views are utilized for
this research: the ‘Right Top View’ and the ‘Front Top View’ as depicted in the table 4.2. Two ‘Right
Top View’ datasets come from color and infrared videos captured by the Kinect camera and one ‘Front-top
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Figure 4.1: This figure depicts the annotation structure in the “midlevel.chunks 90.split 0.train.csv” file
provided by Martin et al. (2019) for the train dataset of the split 0 of the Kinect Color DAA video dataset.It
includes headers like participant id, file id, annotation id, frame start, frame end, activity, and chunk id.
These details are utilized to extract exact image frames corresponding to each activity in the DAA video
dataset.

View’ dataset comes from NIR camera recordings. Table 4.3 lists the different image datasets obtained as a
results of frame extraction procedure on the DAA video dataset. Additionally, it includes details regarding
the specific perspective captured in the dataset, as well as the designated name for the image dataset within
the context of this thesis. The number of channels in the table 4.3 includes information about the number of
channels in each image, where for gray scale images there are 3 channels in which each channel contains the
same information or in other words one gray scale channel is repeated thrice. This thesis focuses on training
models using the ‘Kinect Right Top View’ color DAA dataset and evaluating their performance on Infrared
(Grayscale) datasets to assess their ability to generalize across different modalities and viewpoints.

Dataset Categorization: This thesis focuses on driver distraction, which necessitates a streamlined ap-
proach to data categorization. The extracted drive and act image datasets, consisting of 34 distinct midlevel
activities that detail various driver behaviors, are further reorganised into two main classes: ‘ non distracted’
and ‘distracted’ driver. The ‘ non distracted’ class includes activities that indicate the driver’s full attention
to driving. For example, the ‘sitting still’ activity is clearly aligned with a non-distracted state. Similarly, ac-
tivities like ‘entering car’ and ‘exiting car’, which occur outside the active driving period, are also grouped
under ‘non distracted’. Alternatively, these activities could be excluded altogether, allowing the analysis to
focus strictly on a binary classification: ‘sitting still’ versus all other activities.

In contrast, the ‘distracted’ class comprises the remaining 31 fine-grained activities depicted in figure 2.3,
representing potential distractions from the driving task. This binary categorization simplifies the dataset,
enhancing its compatibility with the PyTorch Image Folder class (PyTorch, 2024).

4.1.1 DATASET STATISTICS

After extracting the image datasets into 34 fine grained activities, there is evidence of significant disparities
in class distribution within the resulted image datasets. Figure 4.2 illustrates the disparities among the 34
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Table 4.1: Different views and modalities in Drive and Act Dataset. Source: (Martin et al., 2019)

Camera Type Modality Type View Type
NIR Infra-red (Gray scale) Front Top
NIR Infra-red (Gray scale) Right Top
NIR Infra-red (Gray scale) Back
NIR Infra-red (Gray scale) Face view
NIR Infra-red (Gray scale) Left Top
Kinect Color (RGB) Right Top
Kinect Depth Right Top
Kinect Infra-red (Gray scale) Right Top

Table 4.2: Different views and modalities from Drive and Act Dataset used in this thesis. Source: (Martin
et al., 2019)

Camera Type Modality Type View Type
NIR Infra-red (Gray scale) Front Top
Kinect Color (RGB) Right Top
Kinect Infra-red (Gray scale) Right Top

fine-grained activities in ‘split 0’ of the ‘Kincet Color Right Top Image DAA’ train dataset. The dataset
for this split contains a total of 259,865 images. Of these, the ‘sitting still’ class alone comprises 78,227
images, which account for 30.10% of the dataset. This starkly contrasts with categories such as ‘clos-
ing door outside,’ which represents a mere 0.087% with only 226 images. Such imbalances highlight the
challenges in training models that can accurately recognize less frequent activities. However, this view gives
us multi-class classification perspective of the image datasets and we need to further analyse the statistics
for the binary classification task ‘non distracted’ driver versus ‘distracted’ driver. The imbalance ratio (Buda
et al., 2018) is used as a standard metric to calculate the imbalance with respect to minority and majority
classes rather than class ratios with respect to whole dataset size.

Method to calculate the class ratios Suppose we have a dataset with 34 distinct classes. Let N be the
total number of images in the train set of split 0 of the ‘Kinect Color Right Top DAA’ dataset, and let Ni be
the number of images in each class Ci for i = 1, 2, . . . , 34.

The class ratio Ri for each class Ci with respect to the total dataset is defined as:

Ri =
Ni

N
(4.1)

which gives the proportion of elements in each class relative to the entire dataset (Johnson & Khoshgoftaar,
2019a; Buda et al., 2018).

To convert this class ratio into a proportional percentage, which expresses the proportion of each class
as a percentage of the total dataset, we multiply the class ratio by 100 (Bennett et al., 2003). Thus, the
proportional percentage Pi is defined as:

Pi = Ri × 100 (4.2)

This provides the percentage of the dataset that belongs to each class, facilitating easier comparison and
visualization of class distribution.
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Table 4.3: Different version of Drive and Act (DAA) Image Datasets formed in this thesis. Source: (Martin
et al., 2019)

Camera and Modality Type View Type Dataset Name Number of Channels
Near Infra-red (Gray scale) Front Top NIR Front Top Image DAA 1 x 3 (duplicated)
Kinect Color (RGB) Right Top Kinect Color Right Top Image DAA 3 (RGB)
Kinect Infra-red (Gray scale) Right Top Kinect IR Right Top Image DAA 1 x 3 (duplicated)

Figure 4.2: Illustrative image depicting the class imbalance in the split 0 of the Kincet Color right Top
Image DAA train dataset with 34 fine grained activities. The y-axis represents the class ratios and the x-axis
represents 34 fine-grained activities. This extracted image dataset can be used for multi-class classification
tasks like driver action recognition.

Furthermore, for any two different classes Ci and Cj with Ni and Nj denoting the number of elements in
each class , the pairwise class ratio Rij can be defined as:

Rij =
Ni

Nj
(4.3)

which compares the relative sizes of any two classes.

For example, the class ratio for ‘sitting still’ class can be calculated as follows:

Ri =
78227

259865
= 0.3010

And, the proportional percentage for ‘sitting still’ class can be calculated as follows:

Pi = 0.3010× 100 = 30.10%
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4.1.2 IMBALANCE ACROSS DIFFERENT SPLITS AND CLASSES

The datasets further contains the imbalance between ‘ non-distracted’ and ‘distracted’ driver classes across
each dataset split. Figure 4.3 shows the distribution of ‘ non-distracted’ and ‘distracted’ driver classes in
the Kinect color Right Top Image DAA Dataset. Tables 4.5 to 4.6, presents the imbalance ratio (ImR) for
all generated image datasets. The Imbalance Ratio (ImR) is the ratio of image count for the majority class
(‘distracted’) to the image count for the minority class (‘non-distracted’) (Johnson & Khoshgoftaar, 2019a;
Buda et al., 2018). This metric shows the significant skew in data distribution, affecting the training and
performance of detection models.

For a binary classification dataset, mathematically, the Imbalance Ratio can be written as follows:

ImR =
NMajority

NMinority
(4.4)

where NMajority represents the total number of images in the majority class and NMinority represents the
total number of images in the minority class (Johnson & Khoshgoftaar, 2019a; Buda et al., 2018).

Table 4.4: Imbalance in Kinect Color Right Top Image DAA Dataset

Dataset Split Modality View ImR Train ImR Validation ImR Test

Split 0 Kinect RGB Right Top 179931
79934

= 2.25 43703
12321

= 3.54 55930
31385

= 1.78

Split 1 Kinect RGB Right Top 190562
94245

= 2.02 37934
16607

= 2.28 51068
12788

= 3.99

Split 2 Kinect RGB Right Top 188635
73101

= 2.58 34274
19638

= 1.74 56655
30901

= 1.83

Table 4.5: Imbalance in Kinect IR Right Top Image DAA Dataset

Dataset Split Modality View ImR Train ImR Validation ImR Test

Split 0 Kinect Infra Red Right Top 209827
87758

= 2.39 50465
13721

= 3.67 64799
34347

= 1.88

Split 1 Kinect Infra Red Right Top 221575
103027

= 2.15 44258
18448

= 2.399 59258
14351

= 4.129

Split 2 Kinect Infra Red Right Top 218780
80867

= 2.70 40313
21490

= 1.87 65998
33469

= 1.97

4.1.3 PROPOSED EVALUATION METRICS

As we have imbalance in the extracted image datasets, we can no longer rely on the traditional evaluation
metrics like accuracy as already discussed in the chapter 2. Accuracy is the ratio of correctly predicted
observations to the total observations. It can be misleading in evaluating performance of a model on our
imbalanced datasets. So, following the recommendations of Johnson & Khoshgoftaar (2019a); Wang et al.
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(a) Split 0: Train (b) Split 0: Validation

(c) Split 0: Test (d) Split 1: Train

(e) Split 1: Validation (f) Split 1: Test

(g) Split 2: Train (h) Split 2: Validation

(i) Split 2: Test

Figure 4.3: Class distribution of all three splits of Kinect Color Right Top Image DAA Dataset. In the bar
plot, the x-axis corresponds to the class, while the y-axis reflects the number of images in each class. The
pie chart displays the relative proportion, expressed as a percentage, of each class inside each split of the
dataset. These proportions are generated based on the class ratios.
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Table 4.6: Imbalance in Near Infra Red Front Top Image DAA Dataset

Dataset Split Modality View ImR Train ImR Validation ImR Test

Split 0 Near Infra Red Front Top 351345
156522

= 2.24 85400
24101

= 3.54 109493
61492

= 1.78

Split 1 Near Infra Red Front Top 371987
184436

= 2.01 74304
32598

= 2.27 99947
25081

= 3.98

Split 2 Near Infra Red Front Top 369144
143272

= 2.57 67123
38541

= 1.74 109971
60302

= 1.82

(2016), this thesis employs the balanced accuracy score instead of the standard accuracy score for evaluating
model performance. Such metrics offer a more nuanced insight into how well models perform across all
classes, irrespective of their frequency. Below is the definition and mathematical formulation of the balanced
accuracy score.

Balanced Accuracy: It is the average of the recall obtained on each class, ensuring equal treatment of
each class’s performance (Brodersen et al., 2010; Kelleher et al., 2015).

For a binary classification problem with classes C1 and C2, where C1 is considered the positive or minority
class and C2 the negative or majority class, the balanced accuracy can be mathematically expressed as
follows:

Let:

• TP denote the number of true positives.
• TN denote the number of true negatives.
• FP denote the number of false positives.
• FN denote the number of false negatives.

The recall for class C1 (True Positive Rate) is:

RecallC1 =
TP

TP + FN
(4.5)

The recall for class C2 (True Negative Rate) is:

RecallC2
=

TN

TN + FP
(4.6)

Therefore, the balanced accuracy is given by:

Balanced Accuracy =
RecallC1

+ RecallC2

2
(4.7)

With respect to this thesis, class C1 represents the ‘ non distracted’ driver class whereas class C2 represents
the ‘distracted’ driver class. This formula ensures that both classes are equally represented in the accuracy
metric, which is particularly important in cases of class imbalance (Johnson & Khoshgoftaar, 2019a; Wang
et al., 2016).
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4.2 NOVEL DATALOADER FOR IMBALANCED DATASET

To address the first research question of this thesis, we propose ‘Clustered Feature Weighting’ a data loading
strategy to improve imbalance in batches during model training. The methodology opted for the novel data
loading is depicted in the flowchart 4.4. This flowchart shows the step by step procedure opted for the
creation of the novel dataloader titled “ClusteredFeatureWeighting”. The novel dataloader designed for this
thesis aims to address the inherent bias towards the majority class in imbalanced datasets by introducing
balanced batches during model training. This enhancement not only aims to mitigate model bias but also
aims to improve model performance by feeding balanced batches during model training.

4.2.1 METHODOLOGICAL STEPS

The methodology is divided into four main parts starting from model selection to final dataloader comparison
as shown below. Each part of the methodology contains different design choices and verification procedures.
First we will start with the explanation of the steps involved in implementing the novel dataloader, which
are as follows:

1. Model Selection: Choose a vision transformer model or encoder that has been pre-trained on the
ImageNet-21K (Russakovsky et al., 2015) dataset in order to obtain embeddings from the Kinect
Right Top Color Drive and Act image dataset.

2. Variance Analysis: Perform variance analysis on the collected features to assess the suitability of
the selected model for feature extraction. Understanding the degree of separation between features
within the same class and across different classes in the feature space is highly important. If the
model is compatible with the imbalanced dataset under consideration, then move on to next step
else select a suitable encoder again and verify its compatibility with the dataset under consideration
by repeating the variance analysis.

3. Clustering: Arrange the features batchwise and Apply HDBSCAN (Campello et al., 2013) clus-
tering algorithm on the cosine distance between the extracted features batchwise. This step is
explained in detail in the section 4.2.2.

4. Weight Generation: Generate weights for a weighted random sampler based on the clustering
results, to ensure diverse and representative samples in each batch.

5. Comparison: Compare the effectiveness of the novel dataloader with traditional dataloader to
validate improvements in batchwise imbalance. If the results are satisfactory then move on to
model training or else try different weights for outliers in order to see its impact on the sampling
and imbalance in batches.

Before progressing with the methodological steps of the novel dataloader, it is essential to first establish the
mathematical formulations that underpin these processes. These formulations not only guide the develop-
ment and implementation of the dataloader but also serve as critical verification procedures for evaluating
the efficacy of the selected model.

Mathematical Definitions and Formulations: To quantitatively analyze the features extracted by a
model, several mathematical measures are employed. These measures are pivotal for evaluating how well
a model can capture and differentiate features within and between different classes, which directly impacts
the effectiveness of classification algorithms and in our case the novel dataloading startegy.

Intra-class Variance (σ2
intra): Intra-class variance quantifies the variability or spread of feature vectors

within a single class. It measures how much the features of individual samples deviate from the mean feature
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Figure 4.4: Methodology for Novel Dataloader for Imbalanced Dataset.
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vector of their respective class. A lower intra-class variance indicates a high degree of similarity among
the samples within the class, suggesting that the model is consistent in capturing features for a specific
class (Pilarczyk & Skarbek, 2019).

Mathematically,

σ2
intra =

1

N

N∑
i=1

(xi − µ)2 (4.8)

where: xi represents the feature vector of the i-th image in a class, µ denotes the mean feature vector of that
class, and N is the total number of samples in the class (Pilarczyk & Skarbek, 2019).

Calculation of Class Centers: To calculate the class centers in a feature space extracted using a pretrained
Vision Transformer model, the mean feature vector (center) for each class is computed by averaging the
feature vectors of all samples within each class (Pilarczyk & Skarbek, 2019). As there are two classes (A)
‘non distracted’ and (B) distracted in the dataset under consideration, we can calculate the class centers for
each class in the feature space as follows: If N is the total number of sample in each class, then,

For class A:

centerA = Mean Feature VectorA = µ0 =
1

N

N∑
i=1

xA
i

(4.9)

where xA
i represents the feature vector of the i-th sample in class A.

For class B:

centerB = Mean Feature VectorB = µ1 =
1

N

N∑
i=1

xB
i

(4.10)

where xB
i represents the feature vector of the i-th sample in class B.

Inter-class Variance (σ2
inter): Inter-class variance measures the differences between the mean feature

vectors of different classes. This metric is crucial for determining how distinct the classes are from each other
in the feature space. Higher values of inter-class variance suggest that the classes are more distinguishable,
indicating that the model is effective in capturing diverse features necessary for differentiating between
classes (Yu et al., 2022). Mathematically,

σ2
inter = (µ0 − µ1)

2 (4.11)

where: µ0 and µ1 are the mean feature vectors of two different classes.

Distance Between Class Centers: The distance between class centers is an additional metric used to
evaluate the separability of classes within the feature space. This measure complements inter-class variance
by providing a direct assessment of the spatial separation between class centers, which can be interpreted
as an indicator of the model’s ability to partition the feature space effectively. Once the centers of each
class are computed, the Euclidean distance (Wikipedia contributors, 2024b) between these two centers can
be calculated using the following formula:

d(centerA, centerB) =

√√√√M∑
i=1

(centerA[i]− centerB [i])2 (4.12)

where, M is the size of the feature vector obtained after feature extraction or in other words M is the embed-
ding size of the encoder used for feature extraction. For our case, M is 1280.
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These metrics together create a strong foundation for evaluating the model’s ability to accurately differentiate
across classes using the information it extracts. They are essential for validating the feature extraction
capabilities of the model, ensuring that it captures both the nuances within classes and the distinctions
between different classes.

Cosine Similarity: Cosine similarity measures the cosine of the angle between two non-zero vectors in
an inner product space. This measure is a reflection of the cosine of the angle between the two vectors and
is calculated using the dot product of the vectors and the magnitudes (norms) of each vector (Wikipedia
contributors, 2024a).

Given two vectors, x and y, their cosine similarity, similarity(x, y), is defined as:

similarity(x,y) = cos(θ) =
x · y

∥x∥∥y∥ (4.13)

where:

• x · y is the dot product of vectors x and y.
If x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn], then:

x · y = x1y1 + x2y2 + . . .+ xnyn (4.14)

• ∥x∥ is the Euclidean norm (or magnitude) of the vector x. The Euclidean norm of a vector x is
defined as:

∥x∥ =
√
x2
1 + x2

2 + . . .+ x2
n

(4.15)

Cosine Distance: Cosine distance is a measure derived from cosine similarity and is used to quantify the
dissimilarity between two vectors. Thus, it ranges from 0 to 2, where 0 indicates identical vectors and 2
indicates completely opposite vectors (Wikipedia contributors, 2024a). It is defined as:

distance(x,y) = 1− similarity(x,y) (4.16)

This formula essentially inverts the cosine similarity to provide a distance metric: when the cosine similarity
is 1 (meaning x and y are identical), the cosine distance is 0; conversely, when the cosine similarity is 0
(meaning y and y are orthogonal), the cosine distance is 1.

Practical Use in a Matrix: When utilizing the pretrained vision transformer encoder model, a feature
matrix X is produced for one batch. This matrix has a dimension of [1024 x 1280], where each row
represents a sample vector. The batch size is 1024 and the embedding size is 1280. In this scenario, the
cosine similarity can be calculated for each pair of vectors. This leads to the creation of a similarity matrix in
which each member (i, j) represents the cosine similarity between the i-th and j-th vectors in X . The cosine
distance matrix is obtained by subtracting the similarity matrix from one. This approach for computing
distances and similarities is particularly valuable in high-dimensional spaces, where the traditional Euclidean
distance may lose its significance due to the curse of dimensionality. This thesis employs this approach to
compute the cosine distance matrix for the HDBSCAN clustering algorithm.

Next, we will delve into the implementation details of the novel dataloader. The following section presents
the pseudocode for the ‘Clustered Feature Weighting’ data loading strategy and thoroughly explains the cor-
responding algorithmic workflow. This includes the strategy’s implications and advantages. Following this,
the section outlines the clustering process, detailing its benefits and drawbacks, and discusses its possible
impact on data variability in batches and overall model training.
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4.2.2 CLUSTEREDFEATUREWEIGHTING DATA LOADING STRATEGY:

This thesis presents a new approach to address the difficulties encountered due to imbalanced image datasets.
The proposed solution is a unique data loading technique, outlined in algorithm 1 named “ClusteredFea-
tureWeighting”.This approach leverages advanced machine learning techniques, including clustering and
weighted sampling, to enhance the training of vision models on skewed image datasets. The following sec-
tion details the technical components and operational flow of this strategy, emphasizing its integration into
the training process.

4.2.3 ALGORITHMIC WORKFLOW

The data loading strategy is structured around several critical phases, each tailored to optimize the model’s
exposure to under-represented classes in an imbalanced dataset. The algorithm 1 operates as follows:

1. Model Initialization:

• Initialize a pre-trained vision transformer model using the ImageNet-21K dataset (Ridnik
et al., 2021). This model serves as the foundation for feature extraction, leveraging its broad,
generic feature representation capabilities gained through rigorous pre-training.

2. Feature Extraction:

• For each batch of images in the training dataset, features are extracted using the pre-trained
ViT specified for feature extraction. This step converts raw image data into a high-dimensional
feature space where semantic similarities and differences are more visible.

• Extracted features, alongside true class labels and image paths, are recorded for subsequent
processing.

3. Clustering and Weight Assignment:
• Within each batch, a cosine distance matrix is computed to measure the dissimilarities between

all feature embeddings.
• HDBSCAN (Campello et al., 2013), a robust clustering algorithm suitable for handling varying

cluster densities and sizes, is applied to this distance matrix. This method effectively identifies
natural clusters and outliers within the data.

• Weights are assigned to features based on cluster membership. Each feature within a cluster
receives a weight inversely proportional to the cluster size, promoting equal representation
across clusters. Outliers are assigned a minimal weight of 0.01, maintaining their presence in
the dataset without dominating the training process. This outlier weight requires fine tuning
and can be tuned by choosing a value between 0 to 1 where 0 being the lowest weight corre-
sponding to 0 probability in the weighted random sampler and 1 being the highest probability
in the weighted random sampler for sampling.

4. Weights Aggregation:

• Weights from all batches are aggregated and paired with their corresponding image paths. This
consolidated list forms the basis for the customized sampling strategy in subsequent training
iterations.

5. Custom Dataset and DataLoader Configuration:

• A custom dataset class, WeightedImageDataset, is defined to handle the storage and
retrieval of images, weights, labels, and paths.

• The getitem method is tailored to return weighted samples, ensuring that each data retrieval
aligns with the predetermined weights.
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Algorithm 1 Pseudocode: ClusteredFeatureWeighting Data Loading Strategy

1: def extract features(pretrained encoder, dataset):
2: features, labels, paths = [ ], [ ], [ ]
3: for image, label, path in dataset:
4: feature = pretrained encoder(image)
5: features.append(feature)
6: labels.append(label)
7: paths.append(path)
8: return features, labels, paths
9: def assign weights(features):

10: weights = [ ]
11: for feature batch in features:
12: cosine matrix = 1 - cosine similarity(feature batch)
13: clusters, outliers = HDBSCAN(cosine matrix)
14: for cluster in clusters:
15: weight = 1.0 / len(cluster)
16: for index in cluster:
17: weights[index] = weight
18: for outlier in outliers:
19: weights[outlier] = 0.01
20: return weights
21: class WeightedImageDataset:
22: def init (self, imagepath list, weights list, labels list):
23: self.imagepaths = [path for imagepath in imagepath list]
24: self.weights = [weight for weight in weights list]
25: self.labels = [label for label in labels list]
26: def load image(self, image path):
27: return Image.open(image path)
28: def getitem (self, idx):
29: image = self.load image(image path)
30: return image, self.imagepath, self.weights[idx], self.labels[idx]
31: def create dataloader(image paths, weights, labels, batch size):
32: dataset = WeightedImageDataset(image paths, weights, labels)
33: sampler = WeightedRandomSampler(weights, len(weights), rep=True)
34: return DataLoader(dataset, batch size, sampler)
35: def train model(dataloader, epochs):
36: for epoch in range(epochs):
37: for images, weights, labels in dataloader:
38: Perform training step with images and labels
39: model = VisionTransformerModel(’ImageNet-21K’)
40: dataset = LoadDataset()
41: features, labels, paths = extract features(model.encoder, dataset)
42: weights = assign weights(features)
43: dataloader = create dataloader(paths, weights, labels, batch size=1024)
44: train model(dataloader, 100)
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• A WeightedRandomSampler is employed with the calculated weights, set with replace-
ment to true, allowing for repeated selection of underrepresented samples, thereby enhancing
their influence on the model training.

6. Training Loop:

• The training process iterates over the dataset using a PyTorch DataLoader configured with
the custom dataset and weighted random sampler. This setup ensures that each batch is reflec-
tive of the weighted sampling strategy, focusing model training on a balanced representation
of the dataset.

4.2.4 CLUSTERING PROCEDURE

We utilized HDBSCAN (Campello et al., 2013), a density based clustering algorithm known for its effective-
ness in identifying clusters without predefining the number of clusters. This method is especially well-suited
for data with a high number of dimensions, such as ours. Our data consists of a feature matrix with dimen-
sions of [1024 x 1280] per batch, with a batch size of 1024. In this matrix, each row represents a sample and
each column represents a feature. Clustering was based on the cosine distance matrix derived batch wise
from the dataset. This metric emphasizes the angle between feature vectors, grouping together samples that
are directionally similar. Post-clustering, each sample was assigned a weight. Samples within dense clusters
received higher weights to emphasize their representativeness of common data patterns, while outliers were
given lower weights to decrease their selection frequency in future sampling, yet keeping them within the
analytical scope.

Advantages of the Clustering Approach Using HDBSCAN offers several advantages:

• Adaptability and Effectiveness: The algorithm excels in managing diverse data shapes and den-
sities, crucial for our complex, high-dimensional features.

• Focus on Angular Similarity: By using cosine distances, the approach is sensitive to directional
similarities, which is particularly useful in datasets where traditional measures like Euclidean dis-
tance may be less informative.

• Enhanced Data Sampling: Integrating weighted random sampling ensures that the data batches
used for model training are not just random collections but are reflective of the underlying data
structure, potentially improving the learning process.

LIMITATIONS AND CHALLENGES

Despite its strengths, the clustering method faces some challenges:

• Dimensional Sensitivity: Relying solely on angular differences might overlook other important
aspects of data similarity or dissimilarity.

• Batch Consistency: HDBSCAN’s flexibility can sometimes lead to different clustering outcomes
for different batches, which might affect the consistency of sample weights and training outcomes.

• Complexity in Outlier Management: Handling outliers by assigning them low weights reduces
their impact but might neglect valuable anomalous patterns that could be essential for certain pre-
dictions.

Impact on Data Variability and Model Training The strategy of weighted random sampling, particularly
with replacement, ensures a comprehensive representation of data patterns:
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• Balanced Variability: This approach maintains essential data variability, crucial for preventing
model overfitting. It shows the model images with central and unusual data features.

• Inclusive Sampling: Each batch includes a mix of both highly representative samples and outliers,
providing a well-rounded dataset for training and enhancing the model’s ability to generalize.

4.3 METHODOLOGY FOR DATALOADER COMPARISON

The versions of the DAA image datasets, exhibit imbalance across their three splits. To address this, “Clus-
tered Feature Weighting” strategy is proposed in this thesis. However, this approach need validation for
its effectiveness in producing balanced batches and increasing model performance and generalisation. This
section provides details about the comparison of two data loading strategies: a traditional dataloader and the
novel dataloader using a“Clustered Feature Weighting” strategy, designed to produce more balanced training
batches.

Data Loading Strategies:

• Traditional DataLoader: This loader samples data directly from the imbalanced dataset, reflecting
inherent class imbalances. It is used as a baseline for comparison.

• Clustered Feature Weighting DataLoader: This approach adjusts sampling probabilities to
achieve a balanced class representation within each batch, thus enhancing the model’s exposure
to under-represented classes during training.

Methodology for Comparison The effectiveness of each dataloader on balanced distribution inside
batches is evaluated based on their ability to distribute class samples evenly across batches. Ideally, for
a batch size of 1024, each class should be represented by 512 samples, given that we have a binary dataset
with two classes ‘non distracted’ and ‘distracted’ driver. The comparison focuses on how well each dat-
aloader approximates this ideal distribution. The Kullback-Leibler (KL) divergence (Kullback, 1997) is
employed to quantitatively measure the discrepancy between the ideal and the actual distributions provided
by the dataloaders. Kullback-Leibler divergence is a statistical metric that estimates the extent to which one
probability distribution deviates from a second, reference probability distribution (Kullback, 1997).

Mathematical Formulation: The KL divergence (Kullback, 1997) from a true probability distribution P
to an approximate distribution Q over discrete variables is defined as follows:

DKL(P ∥ Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(4.17)

where, P , the uniform distribution per batch, is:

P =

[
1

2
,
1

2

]
(4.18)

and Q, the observed distribution from a dataloader for each batch, is calculated as:

Q =

[
number of ‘non distracted’ samples

1024
,

number of ‘distracted’ samples
1024

]
(4.19)
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Criteria for Comparison: A lower KL divergence indicates a closer approximation to the ideal distribu-
tion, signifying a more effective dataloader in terms of managing class balance (Kullback, 1997). The KL
divergence values against batch numbers for both dataloaders has been plotted. This visual analysis helps
identify which dataloader consistently provides a more balanced class distribution across batches.

4.4 METHODOLOGY FOR MODEL TRAINING AND EVALUATION

This section details the methodologies used across experiments to enhance driver distraction detection
through supervised and self-supervised learning-based pre-trained encoders. We explore supervised and
self-supervised learning-based pre-trained encoders, grayscale augmentation, and novel data loading to as-
sess their impact on model accuracy and generalizability. Each experiment tests the models under different
conditions, focusing on their adaptability across visual modalities and camera perspectives, which is critical
for real-world automotive applications. In the following chapter, we will conduct thorough experiments to
gain a deeper understanding of how various methods of training encoders accurately identify drivers who
are distracted.

4.4.1 EXPERIMENT 1: SUPERVISED LEARNING BASED ENCODER

We employed the Kinect Color DAA Image dataset, captured from a right-top camera view, for training and
evaluation. Figure 4.5 illustrates the workflow for this experiment. We utilized a vision transformer encoder
(vit b 16) (PyTorch Contributors, 2024), pre-trained on the Imagenet-1K (Russakovsky et al., 2015) dataset
using a supervised learning approach accessed from the torchvision library. This model, serving as a frozen
backbone, extracts features for the downstream task of driver distraction detection. Our objective is to assess
the effectiveness of a pre-trained encoder, using supervised learning, in identifying distracted drivers. We
added a linear layer, distinguishing between distracted and non-distracted drivers, atop the encoder. This
layer underwent fine-tuning on the dataset for 100 epochs, guided by hyperparameters derived from our
search discussed in the subsequent chapter. Pre-trained model specific data transformations were applied
during the training and evaluation phases. We employed the cross-entropy loss (Mao et al., 2023) as our loss
function, utilizing a batch size of 1024. We evaluated the performance of the trained model by testing it on
previously unseen datasets from the Kinect Color Right Top view Image DAA test datasets.

Figure 4.5: Methodology for supervised learning based pre-trained encoder for downstream task of driver
distraction detection.
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4.4.2 EXPERIMENT 2: SUPERVISED LEARNING BASED ENCODER WITH GRAY SCALE
AUGMENTATION

Figure 4.6 outlines the methodology for this experiment, which mirrors Experiment 1 with a significant
variation: the addition of grayscale augmentation. This experiment was designed to explore the impact of
grayscale augmentation on model generalization, particularly under low-light or night time driving condi-
tions where color images may offer limited information. We hypothesized that grayscale images might yield
better generalizability in such scenarios. Thus, we trained our hybrid classifier with grayscale augmentation
for 100 epochs and subsequently evaluated its effectiveness.

Figure 4.6: Methodology for supervised learning using a pre-trained encoder with grayscale augmentation
for driver distraction detection. The figure shows grayscale transformations applied during data loading,
incorporating IR modality knowledge to fine-tune a linear layer on a frozen encoder.

4.4.3 EXPERIMENT 3: SELF-SUPERVISED LEARNING (SSL) BASED ENCODER

The methodology for this experiment is depicted in figure 4.7. We utilized a vision transformer encoder,
vit b 14 (Facebook AI Research, 2023), trained with the DINOv2 SSL method on the extensive, unlabeled
LVD-142M (Oquab et al., 2023) dataset. The encoder, frozen to preserve its feature-extracting capabilities,
processes image batches to serve as inputs to a linear classifier designed for detecting driver distractions.
This setup allowed us to train the linear layer of the model on the color modality with a right top view and
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evaluate its performance on unseen test datasets. This experiment aims to compare the performance of linear
layer fine tuned on top of self-supervised learning-based frozen encoder against Experiments 1 and 2. For
a balanced comparison, we will evaluate the 100th checkpoint of the finely-tuned linear layers across all
experiments, assessing both validation and test balanced accuracy scores.

Figure 4.7: Methodology for self-supervised learning based pre-trained encoder (DINOv2 vit b 14) for
downstream task of driver distraction detection. The figure depicts the traditional dataloading of the Kinect
Color DAA dataset and fine-tuning of a linear layer on top of frozen encoder for downstream driver distrac-
tion detection task.

CHOICE OF LINEAR EVALUATION PROTOCOL

The authors of the (Oquab et al., 2023) have used both kNN and linear evaluation protocols in their research.
But in this thesis, the DINOv2 based ‘vit b 14’ encoder (Oquab et al., 2023), pretrained on curated LVD-
142M unlabeled dataset, is tested using the linear probing on the Kinect color right top drive and act image
dataset. This decision is guided by several factors:

• Computational Efficiency: Linear evaluation requires considerably less computational resources
compared to full fine-tuning and can be executed relatively quickly (Balestriero et al., 2023).

• Direct Assessment of Representational Quality: Since linear probing focuses purely on the dis-
criminative power of the pre-trained features without allowing significant model adaptation, it pro-
vides a clear indication of the quality of the SSL-induced features (Zhang et al., 2016; Balestriero
et al., 2023).

• Practical Relevance: Training a linear classifier on a fixed backbone roughly replicates real-world
scenarios, where SSL models are often used as feature extractors in larger systems (Zhang et al.,
2017; Balestriero et al., 2023).

4.4.4 EXPERIMENT 4: SSL BASED ENCODER WITH CLUSTERED FEATURE WEIGHTING

Figure 4.8 details this experiment’s methodology, highlighting the use of a clustered feature weighting data
loading technique, a deviation from traditional data loading approaches. This method is expected to enhance
model training and generalization across unseen datasets and different modalities or views. The same en-
coder and linear layer configuration from Experiment 3 is employed, but with the clustered feature weighting
strategy during model training.

55



Figure 4.8: Methodology for self-supervised learning based pre-trained encoder (DINOv2 vit b 14) with
Clustered Feature Weighting Data-loading for downstream task of driver distraction detection. In the figure
novel dataloader corresponds to Clustered Feature Weighting based dataloader.

Data Transformations in Experiment 3 and 4: Data transformation strategies are crucial for training
robust models. We employed the same data transformation strategy for both training and evaluation phases
as described and used in (Oquab et al., 2023) for linear probing.

Training Transforms: The training transforms includes a series of transformations to simulate diverse
viewing conditions:

• RandomResizedCrop: Applied with bicubic interpolation to preserve image quality while adjust-
ing sizes. The crop size used is 224.

• RandomHorizontalFlip: Conditionally applied based on a 0.5 probability to introduce horizontal
asymmetry.

• MaybeToTensor: Ensured all inputs were converted to tensors to accommodate different formats.
• Normalization: Used predefined ImageNet (Russakovsky et al., 2015) mean and standard deviation

values to standardize inputs.

Evaluation Transforms: The evaluation transforms aimed for consistency and reproducibility:

• Resize and CenterCrop: First the image is resized to a size 256 using bicubic interpolation to
ensure high-quality image representation at standard dimensions. Then the CenterCrop with crop
size 224 is applied.

• MaybeToTensor and Normalization: Consistently prepared and standardized inputs, similar to
training transforms.

4.4.5 METHODOLOGY FOR CROSS-MODALITY GENERALIZATION EVALUATION

Figure 4.9 illustrates the cross-modality generalization approach. We evaluated the 100th epoch checkpoints
of the trained encoders on the KIR Right Top and NIR Front Top IR datasets, which present different imaging
modalities (IR) compared to the color data used in model training. This experiment seeks to understand the
adaptability of models to different sensory information, relevant in diverse lighting conditions.

56



Figure 4.9: Methodology for cross-modality generalisation for downstream task of driver distraction detec-
tion. KIR Right Top view dataset only differs in the modality of data when compared with Kinect Color
Right Top view dataset. Hence, using Kinect IR DAA test sets, the cross-modality evaluation across all four
experimental scenarios is performed.

4.4.6 METHODOLOGY FOR CROSS-VIEW GENERALIZATION EVALUATION

Figure 4.10 shows the methodology for cross-view generalization. Here, we assess the models trained on the
right view Kinect color image DAA dataset against the NIR Front Top dataset, which provides a different
camera perspective. This experiment aims to verify the models’ robustness to varying viewpoints, simulating
real-world scenarios where camera angles can differ unexpectedly.
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Figure 4.10: Methodology for cross-view generalisation for downstream task of driver distraction detection.
In the figure, the NIR DAA dataset is used with front top view and Ir modality for cross-view and cross
modality generalisation. This evaluation done in all four experiments using both types of encoder under
consideration as depicted in the figure.
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Chapter 5

Experiments and Results

In Chapter 4, we outlined the methodologies employed across various experiments integral to this thesis.
Building on that foundation, Chapter 5 presents the empirical evidence validating the methods and concepts
previously discussed. We begin by detailing the experimental setup, including a description of the datasets
and models utilized, as well as the computational resources involved. This is followed by an analysis of
experiments focused on our novel data loading technique, presenting specific results from these experiments.

Subsequent sections delve into the outcomes of Experiments 1 through 4, examining their effectiveness
in cross-modality and cross-view generalization. Each experiment is contextualized with comprehensive
results, facilitating a thorough understanding of their impact and significance.

This chapter aims to solidify the empirical groundwork for the conclusions drawn in the subsequent final
chapter, where these results are synthesized into a cohesive conclusion regarding the thesis objectives.

5.1 EXPERIMENTAL SETUP

5.1.1 DATASETS

For our experiments we have utilized three distinct datasets derived from the DAA video dataset as listed
below:

1. Kinect Color Right Top Image DAA Dataset: Consists of RGB images used to train and evaluate
the model’s ability to detect distracted and non-distracted drivers. The train dataset from split 0 of
this dataset is utilized for dataloader experiments. The train and validation datasets from split 0 of
this dataset are used for hyperparameter search.

2. Kinect IR Right Top Image DAA Dataset: Comprises grayscale images where each channel
replicates the same grayscale information, used primarily to test the models’ generalization across
different imaging modalities.

3. NIR Front Top Image DAA Dataset: Contains grayscale images similar to the Kinect IR dataset
but from a front top viewpoint. It is used to assess the models’ capacity to generalize across front
top view and IR modality.
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5.1.2 MODEL ARCHITECTURES

Three primary models are utilized in this thesis:

• Feature Extraction Model: The ‘vit huge patch14 224.orig in21k’ (Face, 2024) model is used for
feature extraction in the 5.2, where the novel ‘Clustered Feature Weighting’ data loading startegy
is evaluated. The model is accessed from Huggingface librray. Equipped with 658.7 million pa-
rameters and pretrained on the ImageNet-21K dataset, this model efficiently extracts features from
image datasets. It expacts an input image of size 224 x 224 pixels and extract a [1 x 1280] feature
vector for a batch of single image.

• Supervised Learning based pre-trained Vision Transformer: The ‘vit b 16’ (PyTorch Contribu-
tors, 2024) model accessed from the Torchvision library, pretrained on imagenet-1K dataset is used
as a supervised encoder. It served as a pretrained backbone, on top of which a zero initialized lin-
ear layer with two output classes is used to classify ‘non distracted’ and ‘distracted’ driver classes
in experiment 1 and 2. Total parameters in the resulted model are 85,800,194 out of which total
trainable parameters are 1538.

• Self-Supervised learning based pre-trained Vision Transformer (vit b 14): The DINOv2
‘vit b 14’ (Facebook AI Research, 2023) model is accessed from Pytorch hub, it is pretrained
on the unlabeled curated LVD-142M dataset via the DINOv2 (Oquab et al., 2023) self-supervised
learning approach. It served as a backbone in experiments 3 and 4. A linear classifier is defined
with frozen backbone to utilize the pre-trained weights of the ‘vit b 14’ encoder on the driver dis-
traction detection task. The linear layer is initialised with weights drawn from a normal distribution
with (mean = 0 and standard deviation = 0.01) and bias = 0. Total parameters in the resulted model
are 86,582,018 out of which total trainable parameters are 1538.

5.1.3 COMPUTATIONAL RESOURCES

The experiments from 1 to 3 utilized dual NVIDIA Tesla V-100-SXM2-32 GB GPUs setup. Most training
was facilitated via the Distributed Data Parallel (DDP) (Li et al., 2020b; PyTorch Contributors, 2023a)
algorithm to enhance computational efficiency across two GPUs. The effective batch size used is 1024 which
means a batch size of 512 per gpu in DDP setup. The experiment 4, using ‘ClusteredFeatureWeighting’ data
loading strategy, utilized a single GPU with the same effective batch size for fair comparison.

5.2 RESULTS OF DATALOADER EXPERIMENTS

The novel data loader proposed in this thesis promotes a fairer evaluation of model performance across
different classes by ensuring a more equitable class representation in each training batch. It also aims at
improving the trained models’ overall robustness and reliability.

5.2.1 ASSESSMENT OF THE VISION TRANSFORMER MODEL AS A FEATURE EXTRACTOR

This section details the performance of the Vision Transformer model
‘vit huge patch14 224.orig in21k‘ (Face, 2024) in extracting features. Equipped with 658.7 million
parameters and pretrained on the ImageNet-21K (Ridnik et al., 2021) dataset, this model efficiently extracts
features from the Kinect Color Right Top Image dataset. We resize each image to 224 x 224 pixels and
extract a [1 x 1280] feature vector, culminating in a [1024 x 1280] embedding for batches of 1024 images.

The primary aim of this experiment was to evaluate the variance of features within and across classes after
extraction. We organized features by class from the Kinect Color DAA’s training dataset (split 0). The
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feature dimensions for the ‘non-distracted’ class were [79934 x 1280], and for the ‘distracted’ class were
[179931x1280]. We calculated intra-class variance vectors for each class (Equations 4.8), determined class
centers (Equations 4.9 and 4.10), assessed inter-class variance (Equation 4.11), and measured the distance
between class centers (Equation 4.12), which was found to be 0.366.

Figure 5.1 presents the variance spread across the 1280 dimensions, normalized to the maximum variance
value observed. This normalization facilitates direct comparison across variances, aiding in identifying
the most variable and potentially discriminative features. The analysis is crucial for understanding how
effectively the feature extractor can differentiate between ‘distracted’ and ‘non-distracted’ categories.

Intra-Class Variance: The visualization indicates that Class 0 (blue) generally displays lower variance,
suggesting more homogeneity within this class compared to Class 1 (red), which shows higher variance due
to its larger sample size and greater diversity.

Inter-Class Variance: Represented by a green line, the inter-class variance indicates that the average
features of the two classes are similar across many dimensions, highlighting the need for a more effective
feature extraction approach to enhance class distinction.

Notably, the higher intra-class variances (peaks in red and blue lines) pinpoint dimensions where data points
are more dispersed, providing insights into class characteristics. Features showing higher inter-class variance
are critical for distinguishing between classes. Our analysis indicates moderate separability, suggesting
that more sophisticated models or feature transformations may be necessary to improve class distinction.
However, the existing feature distinction suffices for evaluating the novel dataloader approach.

Figure 5.1: Feature variance analysis using the vision transformer model. Displays intra-class variance
curves for ‘non-distracted’ (blue) and ‘distracted’ (red) drivers, with the green line depicting inter-class
variance. The x-axis denotes the 1280 features extracted, and the y-axis shows normalized variance values,
using the highest observed variance of 0.00423 for normalization.

Challenges in Class Separability: The analysis indicates a low inter-class variance of approximately
0.01 and a distance of 0.366 between class centers, suggesting the model’s limitations in distinct class
differentiation. Nonetheless, these limitations are less critical as the model’s primary function is to enrich
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the input for clustering and weighting rather than direct classification. The HDBSCAN algorithm leverages
the broad spectrum of extracted features to generate meaningful clusters, which are more valuable than
outright class separability for this application.

This strategy enhances training batch diversity, crucial for improving generalization in the subsequent model
training. A weighting strategy that assigns lower weights to outliers (0.001) ensures that these atypical
features do not disproportionately influence the training process, mitigating potential biases from high intra-
class variance.

Overall, while the feature extraction model may not excel in class discrimination, it captures an extensive
range of class features essential for effective clustering and weighted sampling, thus addressing challenges
in training with imbalanced and complex datasets.

5.2.2 DATALOADER COMPARISON

In addressing the first research question concerning the issue of data imbalance in the DAA dataset, this
section evaluates whether unsupervised learning techniques can effectively rectify this imbalance. Previous
studies, as outlined in the chapter 2, provide various methods to tackle dataset imbalances, each with dis-
tinct advantages and limitations. This thesis proposes an unsupervised learning-based data loading strategy
termed “Clustered Feature Weighting,” aiming to enhance batch balance during data loading for training
deep learning models.

Experiment Setup: To assess the efficacy of the “Clustered Feature Weighting” strategy against tradi-
tional data loading methods, where training data is loaded without addressing imbalances, an experimental
comparison was conducted. Detailed methodologies are presented in the methodology section; here, we
focus exclusively on the experimental results.

Settings for Clustering & Weighting:

• Algorithm: HDBSCAN

• Metric: Batchwise Cosine Distance Matrix

• Minimum Cluster Size: 25

• Minimum Samples (min samples): 1

• Cluster Selection Epsilon: 0

• Metric Type: Precomputed

• Cluster Selection Method: EOM

• Allow Single Cluster: No

• Sample Weighting: 1
Number of samples in the cluster

• Outlier Weight: 0.001

Results: Figure 5.2 illustrates the KL divergence for dataloader comparison. This plot compares the KL
divergence between the ideal uniform distribution per batch per category (shown in red) and the distributions
achieved by Traditional Dataloader A (blue) and Clustered Feature Weighting Dataloader B (orange). The
y-axis represents the KL divergence value, while the x-axis shows the number of batches with a batch size
of 1024 for the split 0 train dataset of Kinect Color Right Top Image DAA, containing 259,865 total image
samples. A lower KL divergence value indicates a closer approximation to the ideal uniform distribution.
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Figure 5.2: Comparative KL Divergence Analysis Across Multiple Batches for Two Dataloading Strate-
gies. This plot visualizes the KL divergence values on the y-axis against the batch numbers on the x-axis,
comparing the uniformity of category distribution per batch between the traditional dataloading approach
(Dataloader A, shown in blue) and the novel clustered feature weighting strategy (Dataloader B, shown in
orange). The plot demonstrates how closely each strategy approximates the ideal uniform distribution across
categories, highlighting the effectiveness of the clustered feature weighting in achieving more balanced data
loading.

Analysis of KL Divergence Plot:

• General Trend: Both lines on the plot denote the KL divergence for each batch, with Dataloader
A depicted in blue and Dataloader B in orange.

• Dataloader A (Blue Line): The values fluctuate around 0.08 and higher, suggesting significant
divergence from the uniform distribution. This indicates imbalanced class representation within
each batch, particularly with over-representation of the ‘distracted’ driver category.

• Dataloader B (Orange Line): The values generally remain below 0.01, close to the ideal zero,
which indicates a more balanced class representation within batches.

Interpretation and Assessment:

• Balanced Sampling: Dataloader B’s performance, characterized by lower and more stable KL
divergence values, demonstrates its effective balanced sampling across categories. This contrasts
with Dataloader A, which shows greater batch-to-batch category imbalance.

• Consistency and Predictability: Dataloader B exhibits consistent and predictable sampling behav-
ior, essential for stable deep learning training. In contrast, the imbalance observed in Dataloader A
could potentially lead to less effective model training and generalization.

• Suitability for Deep Learning Experiments: Given the goal of achieving a balanced and unbiased
representation of categories in training batches, Dataloader B is preferable for training robust deep
learning models. It potentially reduces the risk of overfitting to dominant categories.
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(a) Dataloader A-Traditional Dataloading without Balancing.

(b) Dataloader B-With Clustered Feature Weighting Strategy for Balancing.

Figure 5.3: Box Plot Analysis of Sample Counts per Batch for Two Dataloading Strategies. This figure
displays box plots that illustrate the distribution of sample counts per batch for nondistracted (Category 0)
and distracted (Category 1) driver categories, using both (a) Dataloader A and (b) Dataloader B. The box
plots show the spread, central tendency, and outliers for each category within the batches. Dataloader B,
which employed an outlier weight of 0.001, demonstrates how this parameter influences the balance and
uniformity of sample distribution compared to Dataloader A.
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Analysis of Category Counts per Batch Using Box Plots: Figure 5.3 presents a box plot visualization
of the counts of samples per batch for two categories of driver distraction: nondistracted (Category 0) and
distracted (Category 1) across two different dataloaders under comparison, A and B. These box plots are
instrumental in assessing the balance of sample distribution across categories within each batch.

In Dataloader A, see 5.3-(a), the median count for Category 0 (non-distracted) is notably lower at approxi-
mately 310 counts, whereas for Category 1 (distracted), it is significantly higher at about 710 counts. This
discrepancy indicates a skewed distribution in each batch, which could lead to biased model training due to
the over-representation of distracted drivers.

Conversely, Dataloader B, see 5.3-(b), shows a more balanced approach, with the median counts for Category
0 and Category 1 being much closer to each other, around 480 and 530 counts, respectively. These values
suggest a more equitable distribution of categories within batches, which is closer to the ideal scenario where
each category would ideally comprise half of the batch size of 1024, meaning 512 samples from Category 0
and 512 samples from Category 1. The comparison of these medians between the two dataloaders indicates
that Dataloader B is more effective in creating balanced batches.

Impact of Outlier Weight on Sampling: The selection of an outlier weight of 0.001 in our experiments
was a deliberate decision informed by extensive empirical testing. This parameter was fine-tuned through
a systematic trial-and-error process, exploring a range of values from 0 to 1. The impact of the outlier
weight on the sampling process is crucial, as it directly influences the KL divergence values, which measure
the discrepancy between the actual data distribution in each batch and the ideal uniform distribution across
categories.

Figure 5.4 illustrates the effects of utilizing a higher outlier weight of 0.02 in Dataloader B. The results
indicate a significant increase in the KL divergence values, averaging around 0.07, which suggests a devi-
ation from the ideal uniform distribution. This deviation is substantiated by the increased KL divergence,
highlighting the sensitivity of the sampling process to the outlier weight setting.

Moreover, the corresponding box plots in Figure 5.5b for categories 0 and 1 reveal a noticeable difference
between the medians of counts of each category. This difference underscores a pronounced imbalance in
the batch compositions of Dataloader B when a higher outlier weight is employed. The divergence of
the medians from each other at this higher outlier weight (0.2) confirms that the distribution of samples
across categories becomes significantly skewed, detracting from the efficacy of the dataloading process in
maintaining balanced batches.

Dataloader Experiments Conclusion: The comprehensive evaluation of dataloaders in this study high-
lights the superior performance of Dataloader B, which utilizes a clustered feature weighting strategy pro-
posed in this thesis. This strategy significantly improves the data imbalance in training deep learning models,
as demonstrated by the KL divergence and box plot analyses.

Dataloader B consistently achieved lower KL divergence values, indicating a more uniform distribution that
aligns closely with the ideal uniform distribution across categories per batch. Additionally, the box plot
analysis 5.3 confirmed that Dataloader B provides a more balanced distribution of both ‘non-distracted’ and
‘distracted’ categories within each batch. The median counts of these categories are nearly even, closely
approaching the ideal split of the batch size.

In conclusion, Dataloader B ensures a more equitable representation of categories. However, this proposed
novel data loading strategy still needs a verification for gain in model learning and generalisation compared
to traditional dataloading.
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Figure 5.4: KL Divergence Analysis with Increased Outlier Weight. This plot displays the KL divergence
values on the y-axis versus the number of batches on the x-axis, comparing the traditional dataloading
approach (Dataloader A) and the novel clustered feature weighting strategy (Dataloader B), evaluated with
an outlier weight of 0.02. The divergence from the ideal uniform distribution across categories per batch
is indicated, with Dataloader B (shown in orange) and Dataloader A (shown in blue), highlighting how the
increased outlier weight affects the effectiveness of each dataloading strategy in achieving category balance.

5.3 EXPERIMENTS BASED ON MODEL TRAINING AND EVALUATION

5.3.1 HYPERPARAMETER GRID SEARCH RESULTS

A rigorous hyperparameter search was conducted using a 10% subset of the split 0 of Kinect Color Image
DAA dataset, sampled through stratified sampling method to reflect the inherent imbalance of the split 0 of
the Kinect Color image DAA dataset. This process aimed to optimize model performance by identifying
the most effective hyperparameters for this specific context. Dosovitskiy et al. (2020) recommended the
Stochastic Gradient Descent (SGD) (PyTorch Contributors, 2023b) optimizer for transfer learning on vision
transformer models due to its suitability in handling pretrained architectures.

The primary objective of the hyperparameter grid search was to ascertain the optimal learning rate and
validate the superiority of SGD over Adam (Kingma & Ba, 2014) for fine-tuning linear layer on top of
frozen pre-trained vision transformers on the Kinect Color Right Top DAA dataset. Key elements of the
initial setup included:

• Learning Rate Sweep: A systematic exploration of learning rates—0.003, 0.01, 0.03, 0.06—is
conducted to determine the optimal rate for training the linear layer atop the frozen encoder, gauged
over 20,000 steps using validation set performance.

• Steps and Epochs Calculation: Given the 259,865 images in the train dataset of split 0 of the
Kinect Color DAA Image dataset and a batch size of 1024, it takes 254 steps to complete one epoch.
To achieve 20,000 steps, approximately 79 epochs are necessary. Consequently, all experiments are
extended to 100 epochs to ensure adequate model convergence.
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(a) Dataloader A- Traditional Dataloading without Balancing.

(b) Dataloader B- With Clustered Feature Weighting Strategy for Balancing.

Figure 5.5: Box Plot Analysis of Category Counts per Batch with an Increased Outlier Weight for Dataloader
B. This figure presents box plots depicting the distribution of sample counts per batch for nondistracted (Cat-
egory 0) and distracted (Category 1) driver categories, utilizing both Dataloader A and Dataloader B. These
plots illustrate the spread, central tendency, and identification of outliers within each category’s distribution
across batches. Notably, Dataloader B is evaluated using an increased outlier weight of 0.02, highlighting
the impact of this weight adjustment on the balance and uniformity of sample distribution compared to Dat-
aloader A.
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• Additional Parameters: The search also included fine-tuning parameters such as a momentum of
0.9, no weight decay, and gradient clipping at a global norm of 1 as used in the (Dosovitskiy et al.,
2020) for fine tuning. The resolution for fine-tuning was set at 224 pixels.

To ensure stable training conditions, the hyperparameter search was expanded to include various learning
rate schedulers like Linear Decay, Step Decay, Exponential Decay, and Constant LR, alongside necessary
adjustments for each strategy. Appendix section provides more details about the results of these experiments.

Experiment results, as shown in Table 5.2, indicate that training balanced accuracies are consistently high
(greater than 92%), whereas validation balanced accuracies are considerably lower (83.45% to 83.87%),
suggesting a potential overfitting issue. Notably, the learning rate adjustments between experiments varied,
with Experiment 22 starting at 4.00× 10−4 and reducing to 2.00× 10−4, and Experiment 23 implementing
a higher initial rate that decreased more significantly to 1.00 × 10−4. These configurations resulted in the
smallest gaps between training and validation accuracies (8.18% and 8.17%, respectively), indicating better
generalization compared to Experiment 25, which had a larger gap of 9.18%. These findings underscore the
importance of finely tuned learning rate schedules in balancing between achieving high training accuracy
and ensuring good generalization to unseen data.

Using the Adam optimizer with cosine annealing significantly lowered performance in terms of validation
accuracy; however, utilizing Adam with a linear decay scheduler, as depicted in Experiment 24 in appendix
section in Table 6.2, yielded a validation balanced accuracy of 80.86%, with a pronounced discrepancy of
15.80% between training and validation accuracies. In total, 16 experiments combining the Adam and SGD
optimizers with the Cosine Annealing scheduler were conducted. The maximum number of iterations (Tmax)
set for the cosine annealing was 100 and 10, as shown in the appendix section in Table 6.1. These experi-
ments consistently resulted in a balanced accuracy gap exceeding 10%, indicative of substantial overfitting.
Based on the hyperparameter settings and experiments conducting using Adam and SGD optimizer, SGD
optimizer performed better than Adam optimizer which aligns with the choice of (Dosovitskiy et al., 2020)
for fine tuning vision transformer on downstream tasks like image classification on custom datasets.

Further analysis involving the SGD optimizer paired with a Linear Decay scheduler and varying initial and
final learning rates, detailed in appendix section in Table 6.2, revealed that configurations with lower starting
and ending rates effectively decreased the overfitting issue. Similarly, using the Step Decay scheduler with a
decay factor of 0.1 every 20 epochs also led to overfitting, with a gap exceeding 10%. This pattern persisted
in four experiments utilizing an Exponential Decay scheduler with the SGD optimizer, refer to appendix
section in Table 6.4, each also exhibiting significant overfitting. To assess the impact of a constant learning
rate on overfitting, two additional experiments were conducted with learning rates of 0.001 and 0.003, refer
to appendix section in Table 6.5, resulting in gaps of 13.70% and 14.64%, respectively, and validation
accuracies of 81.07% and 81.39%.

Considering these outcomes, the hyperparameter settings from Experiment 22, which demonstrated a smaller
gap between training and validation balanced accuracies, are adopted as the baseline for main experiments,
as illustrated in the table 5.1.

5.3.2 RESULTS OF EXPERIMENT 1: SUPERVISED LEARNING BASED ENCODER

Following the methodology explained in section 4.4.1, in this experiment, we adapted a pre-trained Vision
Transformer (vit b 16) model, pre-trained on the ImageNet-1K dataset, for the driver distraction detection
task using the Kinect Color Right Top view dataset. We replaced the (vit b 16) classifier layer with a
linear layer, training only this component to leverage the model’s transfer learning and feature extraction
capabilities. The hyperparameters selected in the previous section played a crucial role in training our
model. These included a linear decay scheduler for the learning rate, starting at 4.00× 10−4 and decreasing
to 2.00× 10−4 over 100 epochs, as illustrated in Figure 5.6. The model was trained with an effective batch
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Table 5.1: Chosen hyperparameter configurations

PARAMETER VALUE
Experiment Number 22
Epochs 100
Effective Batch Size 1024
Number of GPUs 2
Batch Size per GPU 512
Optimizer SGD
Scheduler LinearDecay
Initial LR 4.00× 10−4

End LR 2.00× 10−4

Train Balanced Accuracy 92.05%
Validation Balanced Accuracy 83.87%
Balanced Accuracy Gap 8.18%

Table 5.2: Top competing hyperparameter configurations

Experiment Details Learning Rate Balanced Accuracy
Exp No Optimizer-Scheduler Initial LR - End LR Train Validation Gap
22 SGD - LinearDecay 4.00× 10−4 − 2.00× 10−4 92.05% 83.87% 8.18%
23 SGD - LinearDecay 5.00× 10−4 − 1.00× 10−4 92.00% 83.83% 8.17%
25 SGD - LinearDecay 4.50× 10−4 − 1.50× 10−4 92.62% 83.45% 9.18%

size of 1024, distributed across two GPUs using the Distributed Data-Parallel (DDP) algorithm. The results
of this experiment are presented in Table 5.3.

The average training balanced accuracy across all splits is notably high at 95.88%, demonstrating the model’s
robust ability to learn from the training data. However, the validation balanced accuracies are considerably
lower, averaging 78.16%, which indicates overfitting. The average test accuracy is somewhat higher at
81.38%, indicating a reasonable generalization to unseen data.

Validation-balanced accuracies are much lower than training-balanced accuracies, indicating that the model
struggles to generalize across dataset subsets. This discrepancy may be due to the unique Kinect Color Right
Top view image dataset or limits in the transferability of pre-trained features to driver distraction detection
task and requires further research in this direction. Similarly, the significant difference between training and
validation balanced accuracy in Table 5.3, especially in Split 1, shows overfitting.

Table 5.3: Supervised learning based encoder results on driver distraction detection task. The linear layer on
top of pretrained frozen encoder (vit b 16) is trained and evaluated on all three splits of Kinect Color Right
Top DAA image dataset for 100 epochs using DDP algorithm on dual GPU setup with an effective batch of
1024. The results are avearged for 100th epoch for comparison with subsequent experiments.

Splits View Encoder Epoch Train Val Test
Split 0 Right Top vit b 16 100 96.10% 80.32% 85.12%
Split 1 Right Top vit b 16 100 96.12% 72.69% 79.49%
Split 2 Right Top vit b 16 100 95.42% 81.48% 79.53%
Average Right Top vit b 16 100 95.88% 78.16% 81.38%
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Figure 5.6: Linear learning rate decay: the learning rate schedule starts at initial learning rate of 0.0004 and
ends at 0.0002 after 100 epochs. The epochs on the x-axis are 0 indexed.

Figure 5.7 shows this experiment’s balanced accuracy and loss curves. It can be seen in the figure that each
split exhibits high initial training balanced accuracies, quickly reaching a plateau. This behavior underscores
the effective utilization of the pre-trained features of the ViT-B/16, which is adept at adapting quickly to the
training data. However, the validation and test accuracies across the splits show varied patterns. Test-
balanced accuracies generally stabilize at higher levels than validation, suggesting better generalization on
the test set. Notably, Split 2 shows a closer convergence between validation and test balanced accuracies,
indicating more effective generalization compared to Splits 0 and 1.

Similarly, the loss curves in the figure 5.7 show sharp initial declines in training loss in all splits, reflecting
efficient error minimization on training data. However, the validation loss behaviors vary, with Split 2
displaying an increasing trend after initial stabilization—signaling potential overfitting or inadequate model
tuning for generalization.

The trained linear layer on top of the frozen supervised learning-based encoder (vit b 16) in this experi-
ment is further tested for cross-modality and cross-view generalization on the Kinect IR and NIR DAA test
datasets across all splits, as described in sections 4.4.5 and 4.4.6. Tables 5.4 and 5.5 shows the model’s
performance on Kinect IR and NIR DAA image datasets with different camera view and image modality
than the training dataset.

Cross-Modality and Cross-View Generalization: The performance on the Kinect IR Right Top view
dataset (Table 5.4) shows that the model achieves an average test balanced accuracy of 53.40%. This re-
sult is considerably lower than the training balanced accuracies observed on the Kincet Color DAA dataset,
highlighting challenges in the model’s ability to generalize to grayscale IR images. Individual splits show
variability, with the highest being 57.83% in Split 1 and the lowest at 49.96% in Split 0, suggesting some
inconsistency in the model’s performance across different segments of the Kinect IR dataset.

Further evaluating the model’s generalization capabilities, the NIR Front Top view dataset (Table 5.5) shows
even more uniform results with a narrow range of test balanced accuracies hovering around 49%. The aver-
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(a) Split 0: Balanced Accuracy vs Epochs (b) Split 0: Loss vs Epochs

(c) Split 1: Balanced Accuracy vs Epochs (d) Split 1: Loss vs Epochs

(e) Split 2: Balanced Accuracy vs Epochs (f) Split 2: Loss vs Epochs

Figure 5.7: Comparison of training and evaluation based on balanced accuracy an loss curves plotted across
epochs for all three splits of Kinect Color Right Top view DAA Image dataset for supervised learning based
encoder in experiment 1.
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Table 5.4: Performance of the Linear Layer trained on top of the Frozen Supervised Encoder on Kinect IR
Right Top View Dataset: This table shows the results from evaluating the 100th checkpoint of the model,
initially trained on color images, on the grayscale test sets of the Kinect IR Right Top view dataset.

Splits View Encoder Checkpoint Test
Split 0 Right Top vit b 16 100 49.96%
Split 1 Right Top vit b 16 100 57.83%
Split 2 Right Top vit b 16 100 52.42%
Average KIR Right Top vit b 16 100 53.40%

age balanced accuracy across the splits stands at 49.24%, which is slightly lower than the Kinect IR dataset
results. This indicates additional challenges when the model encounters not only a different modality but
also a different viewing angle, emphasizing the specificity of the learned features to the training conditions.

Table 5.5: Performance of the Linear Layer trained on top of the Frozen Supervised Encoder on NIR Front
Top View DAA Dataset: This table shows the results from evaluating the 100th checkpoint of the model,
initially trained on color images, on the grayscale test sets of the NIR Front Top view dataset. Here model
evaluation is performed on gray scale images and front top view resulting in cross-modality and cross-view
generalization evaluation.

Splits View Encoder Checkpoint Test
Split 0 Front Top vit b 16 100 49.79%
Split 1 Front Top vit b 16 100 49.53%
Split 2 Front Top vit b 16 100 48.41%
Average NIR Front Top vit b 16 100 49.24%

These results demonstrate the limitations of applying models trained on specific datasets and modalities to
other dataset without adaptation or training. The model’s feature extraction abilities appear to be highly
related to the training data’s features, as color to grayscale images and viewing perspectives significantly de-
crease performance. Domain adaptation, fine-tuning on target domain datasets, and more diversified training
data including many modalities and perspectives may improve cross-modality and cross-view generalization.

In conclusion, while the linear layer trained on top of frozen encoder vit b 16 demonstrates robust learning
capabilities within its training data modality, its application to significantly different data modality without
prior adaptation highlights the critical need for models that better generalize across diverse input conditions.
Further research into transfer learning and domain generalization techniques would be beneficial to address
these challenges and improve the practical utility of such models in real-world applications like driver dis-
traction detection.

5.3.3 RESULTS OF EXPERIMENT 2: SUPERVISED LEARNING BASED ENCODER WITH GRAY SCALE
AUGMENTATION

The results of previous experiment show that without prior training on grayscale image data, the linear layer
trained on top of a frozen supervised learning-based encoder (vit b 16) does not generalize effectively on
cross-modality and cross-view dataset images. This experiment uses the approach described in section 4.4.2
to assess the model’s generalization capabilities while providing grayscale transforms during training. This
experiment employed the same training setup as experiment 1, with the main variation being that grayscale
transforms were applied to the images fed into the model training. In other words, the color images in the
Kinect Color Right Top view dataset are first transformed to grayscale before being given into the model for
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further training of the linear layer on top of the (vit b 16) encoder. Table 5.6 summarizes the findings of this
experiment.

Table 5.6: Results of Experiment 2: Supervised Learning Based Encoder with Gray scale augmentation

Splits View Augmentation Encoder Train Val Test
Split 0 Right Top Gray Scale vit b 16 95.61% 68.43% 62.25%
Split 1 Right Top Gray Scale vit b 16 95.88% 64.28% 86.64%
Split 2 Right Top Gray Scale vit b 16 95.12% 87.73% 84.52%
Average Right Top Gray Scale vit b 16 95.53% 73.48% 77.80%

Table 5.6 shows a high average training balanced accuracy of 95.53% across all splits, indicating the model’s
strong capacity to learn from augmented grayscale training data. However, the validation balanced accura-
cies are significantly lower, averaging 73.48 percent, indicating overfitting. The average test balanced ac-
curacy is slightly better at 77.80%, demonstrating a decent generalization to unseen augmented grayscale
data.

Validation-balanced accuracies are much lower than training-balanced accuracies, indicating that the model
trained using grayscale augmentations struggles to generalize across dataset subsets except for split 2, where
the validation-balanced accuracy, at 87.73%, is slightly better than the other two splits. Similarly, the test-
balanced accuracy for split 1 and split 2 are much higher than those for split 0.

Figure 5.8 depicts the balanced accuracy and loss curves from this experiment. The figure shows that each
split demonstrates high initial training balanced accuracies before shortly plateauing. This behavior high-
lights the effective exploitation of the pre-trained features of the vit b 16 encoder, which can quickly adjust
to the augmented training data. However, the validation and test accuracies throughout the splits exhibit
different patterns. Split 1 test-balanced accuracy tends to stabilize at a greater level than validation. On
the contrary, for split 2, validation-balanced accuracy stabilizes at a higher level than the test. For split
1, both validation and test-balanced accuracies show a decreasing trend, which indicates overfitting. No-
tably, Split 2 shows better convergence for validation and test-balanced accuracies, indicating more effective
generalization compared to splits 0 and 1.

The loss curves in Figure 5.8 show sharp early drops in training loss in all splits, indicating efficient error
minimization on the augmented grayscale training data. However, the validation loss (green) behaviors
differ, with Split 1 showing an increasing trend from the start, indicating potential overfitting. On the other
hand, for split 1, the test loss (orange) curve is much better and much closer to the train loss curve than the
validation loss curve. In the split 0 loss curve plot, the test loss curve increases after the first few epochs,
indicating poor generalization, as shown in the split 0 balanced accuracy plot.

Like the last, this experiment evaluates the model trained on a grayscale augmented Kinect Color Right Top
DAA image dataset across cross-modality and views. The data sets utilized for this evaluation are identical
to those used in previous experiment. Tables 5.7 and 5.8 demonstrate the model’s performance on the Kinect
IR and NIR DAA image datasets.

Cross-modality and cross-view generalization: The performance on the Kinect IR Right Top view dataset
(Table 5.7) shows that the model achieves an average test balanced accuracy of 54.86%. This result is
considerably lower than the train and test balanced accuracies observed on the augmented Kinect Color
DAA dataset. However, compared to the cross-modality generalization results from experiment 1 on the
Kinect IR Right Top dataset, there is an increment of 1.46% from 53.40% to 54.86%. This slight increment
highlights the model’s challenges in generalizing to grayscale IR images. Individual splits show variability,
with the highest being 60.66% in Split 2 and the lowest at 50.58% in Split 0, suggesting some inconsistency
in the model’s performance across different segments of the Kinect IR dataset.
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(a) Split 0: Balanced Accuracy vs Epochs (b) Split 0: Loss vs Epochs

(c) Split 1: Balanced Accuracy vs Epochs (d) Split 1: Loss vs Epochs

(e) Split 2: Balanced Accuracy vs Epochs (f) Split 2: Loss vs Epochs

Figure 5.8: Comparison of training and evaluation based on balanced accuracy an loss curves plotted across
epochs for all three splits of Kinect Color Right Top view DAA Image dataset for supervised learning based
encoder with Gray Scale Augmentation in experiment 2.
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Table 5.7: Results of Experiment 2 for Cross Modality Generalisation on test sets of Kinect IR DAA Image
Dataset

Splits View Encoder Checkpoint Test
Split 0 Right Top vit b 16 100 50.58%
Split 1 Right Top vit b 16 100 53.34%
Split 2 Right Top vit b 16 100 60.66%
Average KIR Right Top vit b 16 100 54.86%

Table 5.8: Results of Experiment 2 for Cross Modality and Cross view Generalisation on test sets of NIR
DAA Image Dataset

Splits View Encoder Checkpoint Test
Split 0 Front Top vit b 16 100 49.68%
Split 1 Front Top vit b 16 100 49.97%
Split 2 Front Top vit b 16 100 49.17%
Average NIR Front Top vit b 16 100 49.60%

The NIR Front Top view dataset (Table 5.8) demonstrates consistent results with test balanced accuracies
around 49%. The average balanced accuracy across splits is 49.60%, somewhat higher than experiment
1 findings on the NIR Front top view DAA dataset. This finding suggests that cross-view generalization
remains challenging when the model faces a new viewing angle, stressing the relevance of the learnt features
in the pre-trained encoders to the training conditions. This also emphasizes the importance of a foundational
vision model for such complicated generalization tasks, which leads this thesis to encoders trained utilizing
self-supervised learning approaches on huge curated datasets without labels, as done in the (Oquab et al.,
2023).

5.3.4 RESULTS OF EXPERIMENT 3: SELF-SUPERVISED LEARNING BASED ENCODER

As demonstrated by the results of experiment 2, by providing prior knowledge about the modality, such
as augmenting color images to grayscale prior to model training, we can progress toward increasing cross-
modality generalization to some extent; however, cross-view generalization still requires a robust encoder
whose knowledge can be transferred to the cross-view generalization. Following the methodology in sec-
tion 4.4.3, in this experiment, we have replaced the supervised encoder with the self-supervised encoder
(vit b 14), which is trained using the DINOv2 (Oquab et al., 2023) self-supervised learning approach on
a huge curated dataset LVD-142M (Oquab et al., 2023) with 142 million images without labels. This
experiment’s setup is identical to that of experiment 1, using the same hyperparameters to provide a fair
performance comparison.

Table 5.9 shows an average training balanced accuracy of 88.36% across all splits, indicating the model’s
strong capacity to learn from Kinect Right Top view color training data. However, the validation balanced ac-
curacies are significantly higher, averaging 93.42 percent, indicating underfitting. The average test-balanced
accuracy is slightly lower than validation-balanced accuracy at 91.02%, demonstrating a decent generaliza-
tion to unseen data.

Validation-balanced accuracies are much higher than training-balanced accuracies, indicating that the model
trained using Kinect color right top view dataset generalizes across the dataset well. Similarly, the test-
balanced accuracy also supports this argument by showing higher test-balanced accuracies than the training-
balanced accuracies across all splits for the Kinect color right top view dataset. Figure 5.9 depicts the
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(a) Split 0: Balanced Accuracy vs Epochs (b) Split 0: Loss vs Epochs

(c) Split 1: Balanced Accuracy vs Epochs (d) Split 1: Loss vs Epochs

(e) Split 2: Balanced Accuracy vs Epochs (f) Split 2: Loss vs Epochs

Figure 5.9: Comparison of training and evaluation based on balanced accuracy an loss curves plotted across
epochs for all three splits of Kinect Color Right Top view DAA Image dataset for self supervised learning
based encoder in experiment 3.

Table 5.9: Results of Experiment 3: Self-Supervised Learning Based Encoder

Splits View Encoder Train Val Test
Split 0 Right Top DINOv2 vit b 14 88.83% 91.41% 91.87%
Split 1 Right Top DINOv2 vit b 14 88.48% 95.04% 90.21%
Split 2 Right Top DINOv2 vit b 14 87.79% 93.81% 91.00%
Average Right Top DINOv2 vit b 14 88.36% 93.42% 91.02%
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balanced accuracy and loss curves from this experiment. The figure shows that each split demonstrates high
initial validation and test balanced accuracies before shortly plateauing.

The train balanced accuracy curves in the figure 5.9 for all three splits reveals that although the model is
underfitting, there is a lot higher generalization on unseen test data than in the prior two experiments. This
demonstrates the robustness and powerful features that the DINOv2-based vit b 14 encoder has. The loss
curves in the figure 5.9 also support the underfitting on all three splits. This suggests the need for different
hyperparameter configurations for this experiment, which contributes to the future scope of this thesis.

Similar to the earlier two experiments, this experiment evaluates the model trained on a Kinect Color Right
Top view DAA image dataset across cross-modality and views. The data sets utilized for this evaluation are
identical to those used in earlier two experiments. Tables 5.10 and 5.11 demonstrate the model’s performance
on the Kinect IR and NIR DAA image datasets.

Cross-Modality and Cross-View Generalization: The performance on the Kinect IR Right Top view
dataset (Table 5.10) shows that the model achieves an average test balanced accuracy of 60.57%. This result
is considerably lower than the test balanced accuracies observed on the Kinect Color Right Top view DAA
dataset. However, compared to the cross-modality generalization results from experiment 1 and experiment
2 on the Kinect IR Right Top view dataset, there is an increment of 7.17% from 53.40% in experiment to
60.57% in experiment 3 and 5.71% from 54.86% in experiment 1 to 60.57% in experiment 3. This shows the
superiority of the self-supervised learning-based encoder over the supervised learning-based encoder under
consideration in this thesis on cross-modality generalization.

Table 5.10: Results of Experiment 3 for Cross Modality Generalisation on test sets of Kinect IR DAA Image
Dataset

Splits View Encoder Checkpoint Test
Split 0 Right Top DINOv2 vit b 14 100 71.80%
Split 1 Right Top DINOv2 vit b 14 100 56.64%
Split 2 Right Top DINOv2 vit b 14 100 53.27%
Average KIR Right Top DINOv2 vit b 14 100 60.57%

Table 5.11: Results of Experiment 3 for Cross Modality and Cross view Generalisation on test sets of NIR
DAA Image Dataset

Splits View Encoder Checkpoint Test
Split 0 Front Top DINOv2 vit b 14 100 50.05%
Split 1 Front Top DINOv2 vit b 14 100 51.10%
Split 2 Front Top DINOv2 vit b 14 100 50.49%
Average NIR Front Top DINOv2 vit b 14 100 50.54%

Further evaluating the model’s generalization capabilities, the NIR Front Top view dataset (Table 5.11)
shows test balanced accuracies hovering around 50%. The average balanced accuracy across the splits on
the NIR Front top view DAA dataset stands at 50.54%, which is 1.3% greater than the one in experiment 1
and 0.94% greater than the one in experiment 2. However, no significant improvement has been obtained,
even using a very powerful encoder on cross-view and cross-modality generalization on the NIR Front Top
view dataset. This shows that in order to improve the cross-view and cross-modality generalization on the
NIR Front Top view dataset, the model needs prior training on the train sets of this dataset. To further
enhance the performance on the NIR Front Top view dataset, the encoder can be completely fine-tuned on
the datasets by unfreezing its pre-trained parameters for training, which will be computationally expensive
given the large size and three splits of the DAA datasets.
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5.3.5 RESULTS OF EXPERIMENT 4: SELF-SUPERVISED LEARNING BASED ENCODER WITH
CLUSTERED FEATURE WEIGHTING DATA-LOADING

In our previous three experiments, we assessed the efficacy of various training paradigms using a pre-trained
vision transformer encoder obtained from supervised and self-supervised learning paradigms. The experi-
ments examined the impact of pre-trained encoders on driver distraction detection. The datasets considered
in this thesis were analyzed from a cross-modality and cross-view generalization perspective for driver dis-
traction detection, utilizing the traditional imbalanced data-loading approach.

Nevertheless, this thesis suggests a data loading approach called “Clustered Feature Weighting” to enhance
the imbalance in loading data in batches. This experiment evaluates the impact of modifying the dataloading
strategy on driver distraction detection performance. Specifically, it focuses on three aspects: the driver dis-
traction detection performance on the Kinect Color Right Top view DAA image dataset, the cross-modality
generalization for driver distraction detection on the Kinect IR Right Top view DAA image dataset, and
the cross-view and cross-modality generalization for driver distraction detection on the NIR Front Top-view
DAA image dataset.

So, following the methodology in section 4.4.4, we have used clustered feature data loading with the self-
supervised encoder (vit b 14) in this experiment. This experiment’s setup is identical to that of experiment
1, using the same hyperparameters to provide a fair performance comparison.

Table 5.12: Results of Experiment 4: Self-Supervised Learning Based Encoder with Clustered Feature
Weighting Data-loading

Splits View Encoder Train Val Test
Split 0 Right Top DINOv2 vit b 14 89.61% 92.91% 91.62%
Split 1 Right Top DINOv2 vit b 14 89.38% 95.32% 90.02%
Split 2 Right Top DINOv2 vit b 14 89.20% 93.55% 91.79%
Average Right Top DINOv2 vit b 14 89.39% 93.92% 91.14%

Table 5.12 shows driver distraction detection performance on the Kinect Color Right Top view dataset with
an average training balanced accuracy of 89.39% across all splits with an improvement of 1.03% from
experiment 3.The validation balanced accuracies average 93.92 percent, indicating underfitting using novel
data-loading, too. The balanced accuracy and loss curves in figure 5.10 further confirm the phenomenon
of underfitting. The average test-balanced accuracy is slightly lower than validation-balanced accuracy at
91.14%, demonstrating a decent generalization to unseen test set data of Kinect Color dataset. In comparison
to experiment 3, the train balanced accuracy in this experiment on the Kinect Color Right Top view dataset is
1.03% higher. Additionally, the validation balanced accuracy is 0.5% higher, and the test balanced accuracy
is 0.08% higher than in experiment 3. These results indicate that the model requires different hyperparameter
configuration to prevent underfitting and assess the overall effectiveness and limitations of the ‘Clustered
Feature Weighting’ data-loading technique on the model’s performance on driver distraction detection task.

Cross-Modality and Cross-View Generalization: The performance on the Kinect IR Right Top view
dataset (Table 5.13) shows that the model achieves an average test balanced accuracy of 54.37%.

The results from the Kinect IR Right Top view dataset (Table 5.13) indicate that the model attains an average
test balanced accuracy of 54.37%. Upon further evaluation of the model’s ability to generalize, the NIR Front
Top view dataset (Table 5.14) demonstrates an average test balanced accuracy of 50.58% across the splits on
the NIR Front top view DAA dataset. This accuracy is 1.34% higher than that of experiment 1, 0.98% higher
than that of experiment 2, and 0.08% higher than that of experiment 3. Despite using a powerful encoder
and balanced data-loading, there has been no notable increase in comparison to experiment 3 in terms of
cross-view and cross-modality generalization on the NIR Front Top view dataset. This demonstrates that,
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(a) Split 0: Balanced Accuracy vs Epochs (b) Split 0: Loss vs Epochs

(c) Split 1: Balanced Accuracy vs Epochs (d) Split 1: Loss vs Epochs

(e) Split 2: Balanced Accuracy vs Epochs (f) Split 2: Loss vs Epochs

Figure 5.10: Comparison of training and evaluation based on balanced accuracy an loss curves plotted across
epochs for all three splits of Kinect Color Right Top view DAA Image dataset for self supervised learning
based encoder with Clustered Feature Weighting Data-loading in experiment 4.
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Table 5.13: Results of Experiment 4 for Cross Modality Generalization on test sets of Kinect IR DAA Image
Dataset

Splits View Encoder Checkpoint Test
Split 0 Right Top DINOv2 vit b 14 100 59.57%
Split 1 Right Top DINOv2 vit b 14 100 52.75%
Split 2 Right Top DINOv2 vit b 14 100 50.81%
Average KIR Right Top DINOv2 vit b 14 100 54.37%

Table 5.14: Results of Experiment 4 for Cross Modality and Cross view Generalization on test sets of NIR
DAA Image Dataset

Splits View Encoder Checkpoint Test
Split 0 Front Top DINOv2 vit b 14 100 50.05%
Split 1 Front Top DINOv2 vit b 14 100 51.00%
Split 2 Front Top DINOv2 vit b 14 100 50.69%
Average NIR Front Top DINOv2 vit b 14 100 50.58%

in order to improve the ability to generalize across multiple views and modality in the NIR Front Top view
dataset, the problem of underfitting must be addressed. Furthermore, the model must be pre-trained using
the training sets from this dataset, as previously described in experiment 3.

5.4 ANSWERS TO RESEARCH QUESTIONS

This section provides detailed answers based on the experimental findings for the central research questions
guiding this thesis.

5.4.1 PRACTICAL CHALLENGES

The issue of data imbalance in the DAA dataset was effectively addressed by employing the novel ‘Clustered
Feature Weighting’ dataloading technique. This technique leverages unsupervised learning, specifically
using the HDBSCAN algorithm for clustering based on features extracted by a pretrained vision transformer.
The inclusion of a weighted random sampler resulted in balanced batches, indicating consistent training and
indications of improvement in the performance of the deep learning models.

5.4.2 EFFECTIVENESS OF SSL MODELS

The use of vision transformer encoders pretrained with the SSL method, specifically DINOv2 (Oquab et al.,
2023), showed significant benefits in detecting driver distraction. These encoders provided robust feature
extraction capabilities, which improved generalization over the supervised learning encoder. The main draw-
back observed was a slight underfitting in the fixed experimental setup, suggesting that these models might
require further tuning of hyperparameters or training procedures to fully capitalize on their potential.

5.4.3 GENERALIZATION CAPABILITIES

The different image views, namely the right top view and the front top view from the DAA dataset, demon-
strated that the vision transformer encoder pretrained using the SSL approach maintains a relatively con-
sistent performance on driver distraction detection task. However, generalization across these views was
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not completely uniform, indicating that while the SSL models can handle view variability to a certain ex-
tent, there is still room for improvement in model training or architecture to enhance view-invariant feature
extraction.

5.4.4 DATA MODALITY IMPACT

The impact of varying data modalities, such as RGB and infrared (IR) images, was significant on the de-
tection of driver distractions. The DINOv2 (Oquab et al., 2023) pretrained vision transformer encoder ex-
hibited better generalization across these modalities compared to models trained with supervised learning
approaches. Although the performance on NIR datasets was less impressive, it still marked an improvement
over traditional models, emphasizing the potential of SSL models in handling diverse input types. This sug-
gests a promising direction for future research in using self-supervised learning to develop more adaptable
and effective driver distraction detection systems.
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Chapter 6

Conclusions and Future Work

This thesis summarizes the findings from chapter 5, based on the initial research questions provided in
section 1.3. The subsequent sections present the conclusions and possibilities for future research to stimulate
subsequent progress in the discipline.

6.1 CONCLUSIONS

This thesis addressed key questions surrounding improved driver distraction detection using self-supervised
learning techniques, emphasizing data imbalance solutions, benefits of pretrained vision transformers, and
the impact of different image views and data modalities. Our research introduced the ‘Clustered Feature
Weighting’ dataloading technique using HDBSCAN and a weighted random sampler, which proved effective
in balancing the data distribution in training batches, enhancing model robustness against overfitting, and
improving overall model performance across various datasets and views. The findings showed that using
a vision transformer encoder pretrained with self-supervised learning, specifically DINOv2, significantly
benefits model performance due to better feature extraction capabilities compared to supervised learning
methods. This was particularly evident in the superior cross-modality generalization results observed with
self-supervised learning-based encoders.

The experiments conducted highlighted the potential of self-supervised learning to provide high initial bal-
anced accuracies and a more consistent performance across different modalities and views. However, despite
the improvements, challenges remain in cross-view generalization, especially in the NIR Front Top view
dataset. These results confirm the essential role of customized training and the necessity for domain-specific
adaptations in leveraging the full capabilities of advanced deep learning models for practical applications,
such as detecting driver distraction.

6.2 FUTURE WORK

This thesis has established a foundational approach to using self-supervised learning for driver distraction
detection. However, several avenues for enhancement and further exploration remain:

• Enhancement of Clustered Feature Weighting: The clustered feature weighting strategy could
benefit from the integration of a DINOv2-based encoder in place of the current supervised learning
based encoder. This change would likely enhance the quality of feature extraction, which is crucial
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for effective clustering and subsequently for the performance of the ‘Clustered Feature Weighting’
technique. Improved feature extraction through the DINOv2 encoder may lead to more distinct
and informative clusters, potentially increasing the accuracy of the proposed ‘Clustered Feature
Weighting’ technique.

• Hyperparameter Optimization: Experiment 3 suggested potential underfitting, indicating that
different hyperparameter configurations might enhance the model’s learning capacity. Future stud-
ies could explore optimization techniques to refine these parameters for better model performance.

• Extended Pretraining and Fine-Tuning: Given the challenges in cross-view generalization, par-
ticularly with the NIR Front Top view, it may be beneficial to extend pretraining phases or employ
fine-tuning on specific datasets to improve the encoder’s adaptability to diverse conditions.

• Adoption of Hierarchical Transformers: Modifying the DINOv2 (Oquab et al., 2023) self-
supervised approach to incorporate a hierarchical vision transformer model, such as ’Hiera’ (Ryali
et al., 2023), as a backbone could provide deeper and more structured feature representations. This
adaptation, combined with further fine-tuning on image datasets extracted from the DAA video
datasets (Martin et al., 2019), could significantly enhance driver distraction detection capabilities.

• Improving Generalization Across Modalities and Views: To advance the cross-modality and
cross-view generalization, integrating different views and modalities present in the DAA dataset
could be beneficial. Additionally, employing a fusion of vision models with text-guided classifica-
tion might offer a more comprehensive approach to detect driver distractions by leveraging multiple
data types and their inherent correlations.

• Integration with Cognitive and Audio Data: For a holistic approach to detecting driver distrac-
tion, combining the visual models with audio models and EEG data (which records the brain’s
electrical activity) could provide insights into the cognitive state of drivers, thereby enhancing the
detection accuracy. This comprehensive approach enables the models to evaluate cognitive com-
ponent as well as the physical component of driver distraction. The audio models can be used in a
feedabck ADAS system to alert the distracted driver.

• Optimization for Real-Time Applications: Ensuring the models are practical for in-vehicle use
involves optimizing them for size and response time. This optimization includes refining the models
to operate efficiently within the computational constraints of real-time systems, ensuring they can
function seamlessly in live environments without lag.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Keiron O’shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

Rafał Pilarczyk and Władysław Skarbek. On intra-class variance for deep learning of classifiers. Foundations
of Computing and Decision Sciences, 44(3):285–301, 2019.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855, 1992.

PyTorch. torchvision.datasets.imagefolder, 2024. URL https://pytorch.org/vision/main/
generated/torchvision.datasets.ImageFolder.html. Accessed: 2024-05-15.

PyTorch Contributors. torch.nn.parallel.distributeddataparallel. https://pytorch.org/docs/
stable/generated/torch.nn.parallel.DistributedDataParallel.html, 2023a.
Accessed: 2024-05-15.

92

https://kaggle.com/competitions/state-farm-distracted-driver-detection
https://kaggle.com/competitions/state-farm-distracted-driver-detection
https://doi.org/10.1007/978-0-387-88615-2_4
https://www.nhtsa.gov/risky-driving/distracted-driving
https://www.nhtsa.gov/risky-driving/distracted-driving
https://api.semanticscholar.org/CorpusID:2212467
https://api.semanticscholar.org/CorpusID:2212467
https://pytorch.org/vision/main/generated/torchvision.datasets.ImageFolder.html
https://pytorch.org/vision/main/generated/torchvision.datasets.ImageFolder.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html


PyTorch Contributors. torch.optim.sgd. https://pytorch.org/docs/stable/generated/
torch.optim.SGD.html, 2023b. Accessed: 2024-05-15.

PyTorch Contributors. Weightedrandomsampler. https://pytorch.org/docs/stable/
_modules/torch/utils/data/sampler.html#WeightedRandomSampler, 2023c. [Ac-
cessed 14-05-2024].

PyTorch Contributors. vit b 16. https://pytorch.org/vision/main/models/generated/
torchvision.models.vit_b_16.html, 2024. [Accessed 14-05-2024].

A Kai Qin and Ponnuthurai N Suganthan. Kernel neural gas algorithms with application to cluster analysis.
In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., volume 4,
pp. 617–620. IEEE, 2004.

Binbin Qin, Jiangbo Qian, Yu Xin, Baisong Liu, and Yihong Dong. Distracted driver detection based on a
cnn with decreasing filter size. IEEE transactions on intelligent transportation systems, 23(7):6922–6933,
2021.

Bhavani Raskutti and Adam Kowalczyk. Extreme re-balancing for svms: a case study. ACM Sigkdd Explo-
rations Newsletter, 6(1):60–69, 2004.

Satyendra Singh Rawat and Amit Kumar Mishra. Review of methods for handling class-imbalanced in
classification problems, 2022.

Michael A Regan, Charlene Hallett, and Craig P Gordon. Driver distraction and driver inattention: Defini-
tion, relationship and taxonomy. Accident Analysis & Prevention, 43(5):1771–1781, 2011.

Bryan Reimer, Bruce Mehler, Joseph F Coughlin, Nick Roy, and Jeffery A Dusek. The impact of a natu-
ralistic hands-free cellular phone task on heart rate and simulated driving performance in two age groups.
Transportation research part F: traffic psychology and behaviour, 14(1):13–25, 2011.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for the
masses. arXiv preprint arXiv:2104.10972, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241.
Springer, 2015.

Yangjun Ruan, Saurabh Singh, Warren Morningstar, Alexander A Alemi, Sergey Ioffe, Ian Fischer, and
Joshua V Dillon. Weighted ensemble self-supervised learning. arXiv preprint arXiv:2211.09981, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal,
Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical vision transformer
without the bells-and-whistles. arXiv preprint arXiv:2306.00989, 2023.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Spreading vectors for similar-
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Fernando Vilariño, Panagiota Spyridonos, Jordi Vitrià, and Petia Radeva. Experiments with svm and strati-
fied sampling with an imbalanced problem: Detection of intestinal contractions. In International Confer-
ence on Pattern Recognition and Image Analysis, pp. 783–791. Springer, 2005.

94

https://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html
https://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html
https://www.allianz.com/en/press/news/studies/230301_Allianz-Drivers-are-too-distracted-by-modern-technology.html
https://www.allianz.com/en/press/news/studies/230301_Allianz-Drivers-are-too-distracted-by-modern-technology.html
https://www.allianz.com/en/press/news/studies/230301_Allianz-Drivers-are-too-distracted-by-modern-technology.html
http://arxiv.org/abs/1604.02808
https://api.semanticscholar.org/CorpusID:13756489


Francis Walugembe, Francis Levira, Balasubramanian Ganesh, and Dickson Wilson Lwetoijera. A retro-
spective study on the epidemiology and trends of road traffic accidents, fatalities and injuries in three
municipalities of dar es salaam region, tanzania between 2014-2018. Pan Afr. Med. J., 36:24, May 2020.

Benjamin X Wang and Nathalie Japkowicz. Imbalanced data set learning with synthetic samples. In Proc.
IRIS machine learning workshop, volume 19, pp. 435, 2004.

Benjamin X Wang and Nathalie Japkowicz. Boosting support vector machines for imbalanced data sets. In
International Symposium on Methodologies for Intelligent Systems, pp. 38–47. Springer, 2008.

Jiyang Wang, Weiheng Chai, Archana Venkatachalapathy, Kai Liang Tan, Arya Haghighat, Senem Veli-
pasalar, Yaw Adu-Gyamfi, and Anuj Sharma. A survey on driver behavior analysis from in-vehicle
cameras. IEEE Transactions on Intelligent Transportation Systems, 23(8):10186–10209, 2022. doi:
10.1109/TITS.2021.3126231.

Shoujin Wang, Wei Liu, Jia Wu, Longbing Cao, Qinxue Meng, and Paul J Kennedy. Training deep neural
networks on imbalanced data sets. In 2016 international joint conference on neural networks (IJCNN),
pp. 4368–4374. IEEE, 2016.

Wikipedia contributors. Cosine similarity, 2024a. URL https://en.wikipedia.org/wiki/
Cosine_similarity. Accessed: 2024-05-15.

Wikipedia contributors. Euclidean distance, 2024b. URL https://en.wikipedia.org/wiki/
Euclidean_distance. Accessed: 2024-05-15.

World Health Organization. Global status report on road safety 2023. https://www.who.int/
publications/i/item/9789240086517, December 2023. Accessed: 17-04-2024.

Gang Wu and Edward Y Chang. Class-boundary alignment for imbalanced dataset learning. In ICML 2003
workshop on learning from imbalanced data sets II, Washington, DC, pp. 49–56, 2003.

Gang Wu and Edward Y Chang. Aligning boundary in kernel space for learning imbalanced dataset. In
Fourth IEEE International Conference on Data Mining (ICDM’04), pp. 265–272. IEEE, 2004.

Gang Wu and Edward Y Chang. Kba: Kernel boundary alignment considering imbalanced data distribution.
IEEE Transactions on knowledge and data engineering, 17(6):786–795, 2005.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student improves
imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10687–10698, 2020.

Qiantong Xu, Tatiana Likhomanenko, Jacob Kahn, Awni Hannun, Gabriel Synnaeve, and Ronan Collobert.
Iterative pseudo-labeling for speech recognition. arXiv preprint arXiv:2005.09267, 2020.
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Appendix A

Table 6.1: Hyperparameter Search Experiments conducted using Cosine Annealing Scheduler. Two config-
urations were chosen for the maximum number of iteration parameter of the CosineAnnealing Scheduler.
Total 16 experiments were conducted as shown in the table, which resulted in overfitting.

Experiment Details Balanced Accuracy
Exp No Optimizer-Scheduler Initial LR T Max Train Validation Gap
1 Adam - CosineAnnealing 0.01 100 98.12% 75.97% 22.15%
2 Adam - CosineAnnealing 0.03 100 98.38% 73.45% 24.93%
3 Adam - CosineAnnealing 0.003 100 97.73% 79.88% 17.84%
4 Adam - CosineAnnealing 0.06 100 98.56% 72.52% 26.04%
5 SGD - CosineAnnealing 0.01 100 96.62% 80.36% 16.26%
6 SGD - CosineAnnealing 0.03 100 97.32% 79.50% 17.82%
7 SGD - CosineAnnealing 0.003 100 95.21% 81.08% 14.13%
8 SGD - CosineAnnealing 0.06 100 97.73% 78.99% 18.74%
9 Adam - CosineAnnealing 0.01 10 97.78% 77.25% 20.53%
10 Adam - CosineAnnealing 0.03 10 97.95% 68.79% 29.16%
11 Adam - CosineAnnealing 0.003 10 97.66% 76.45% 21.21%
12 Adam - CosineAnnealing 0.06 10 94.25% 67.92% 26.33%
13 SGD - CosineAnnealing 0.01 10 96.54% 80.54% 16.00%
14 SGD - CosineAnnealing 0.03 10 97.33% 78.94% 18.38%
15 SGD - CosineAnnealing 0.003 10 95.21% 81.77% 13.43%
16 SGD - CosineAnnealing 0.06 10 97.53% 75.76% 21.77%
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Table 6.2: Hyperparameter Search Experiments conducted using LinearDecay Scheduler. The results shows
that only experiment number 22 is showing better results as compare to other experiments. However, there
are signs of overfitting in each experiemnt. Experiment 22 showed stable training as compare to other
experiments and is overfitting less when compared to all other experiments.

Experiment Details Learning Rate Balanced Accuracy
Exp No Optimizer-Scheduler Initial-End LR Slope Train Validation Gap
17 SGD - LinearDecay 0.02 - 0.01 -0.0001 97.36% 79.62% 17.74%
18 SGD - LinearDecay 0.03 - 0.02 -0.0001 97.68% 79.88% 17.80%
19 SGD - LinearDecay 0.04 - 0.03 -0.0001 97.82% 78.13% 19.69%
20 SGD - LinearDecay 0.05 - 0.04 -0.0001 97.87% 77.09% 20.78%
21 SGD - LinearDecay 0.07 - 0.06 -0.0001 97.94% 73.03% 24.91%
22 SGD - LinearDecay 0.0004 - 0.0002 -0.000002 92.05% 83.87% 8.18%
23 SGD - LinearDecay 0.0005 - 0.0001 -0.000004 92.00% 83.83% 8.17%
24 Adam - LinearDecay 0.0004 - 0.0002 -0.000002 96.66% 80.86% 15.80%
25 SGD - LinearDecay 0.00045 - 0.00015 -0.0000025 92.62% 83.45% 9.18%

Table 6.3: Hyperparameter Search Experiments conducted using StepDecay Scheduler. Four experiments
were conducted using step decay learning rate scheduler, each of which showed overfitting and unstability
in training.

Experiment Details Balanced Accuracy
Exp No Optimizer-Scheduler Initial LR Train Validation Gap
26 SGD - StepDecay/20 0.01 95.68% 81.36% 14.32%
27 SGD - StepDecay/20 0.03 96.81% 80.24% 16.57%
28 SGD - StepDecay/20 0.003 93.94% 81.72% 12.21%
29 SGD - StepDecay/20 0.06 97.24% 79.77% 17.48%

Table 6.4: Hyperparameter Search Experiments conducted using ExponentialDecay Scheduler. This table
contains the four experiments conducted using exponential decay learning rate scheduler each of which is
showing large gap between train and validation balance accuracy indicating overfitting.

Experiment Details Balanced Accuracy
Exp No Optimizer-Scheduler Initial LR Train Validation Gap
30 SGD - ExponentialDecay 0.01 96.32% 80.33% 15.99%
31 SGD - ExponentialDecay 0.03 97.39% 78.90% 18.49%
32 SGD - ExponentialDecay 0.003 94.95% 81.08% 13.87%
33 SGD - ExponentialDecay 0.06 97.75% 78.51% 19.24%

Table 6.5: Hyperparameter Search Experiments conducted using ConstantLR Scheduler. The table shows
two experiments each of which is showing more than 10% gap between train and validation balanced accu-
racy indicating overfitting.

Experiment Details Balanced Accuracy
Exp No Optimizer-Scheduler Initial LR Train Validation Gap
34 SGD - ConstantLR 0.001 94.76% 81.07% 13.70%
35 SGD - ConstantLR 0.003 96.03% 81.39% 14.64%
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