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Abstract

Developing robust autonomous driving systems requires diverse datasets to train and evaluate object detec-

tion algorithms. However, real-world data collection is costly, time-intensive, and limited in capturing rare

or hazardous scenarios. Simulation platforms like Car Learning to Act (CARLA) address these challenges

by enabling controlled synthetic dataset generation and experimentation.

This research project utilized the CARLA simulator to develop a real-time object detection simulation

for autonomous driving. A simulated Tesla Model 3, equipped with eight cameras, 12 ultrasonic sensors,

and a radar, was used to generate multi-modal sensor data. The project adopted a two-stage, semi-automated

annotation process to label the data. In the first stage, the GroundedSAM foundation model generated labels

based on an established ontology. The second stage involved manual refinement to ensure accuracy and

compliance with the annotation format required for training You Only Look Once (YOLO) models. Using

this approach, the project generated a synthetic dataset containing 6,400 annotated images, capturing diverse

driving scenarios, including vehicles, traffic lights, pedestrians, and traffic signs.

The dataset was used to train and evaluate state-of-the-art YOLO models, including YOLOv8, YOLOv9,

YOLOv10, and YOLO11, along with their size-based variants. Among the 12 models tested, YOLOv8m and

YOLO11m demonstrated the best performance, prioritizing higher localization precision and accurate clas-

sification of classes. These models also attained the highest mAP@0.5:0.95 metric. Integrating YOLO11m

into the CARLA simulator enabled real-time object detection within the simulation environment.

The study highlighted limitations in the dataset, particularly its size and class diversity, underscoring the

need for optimization techniques such as hyperparameter tuning and improvements in balancing recall and

precision to reduce missed detections. Additionally, the research established a robust pipeline for collecting

multi-modal sensor data, paving the way for future advancements in object detection and sensor fusion algo-

rithms. This work contributes to progress in multi-modal synthetic datasets, object detection methodologies,

model generalization, and lays the foundation for sensor fusion research in autonomous driving.

Keywords: CARLA simulator, synthetic datasets, object detection, YOLO models, autonomous driving,

sensor fusion, real-time inference, Tesla Model 3
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Chapter 1

Introduction

Recent technological advancements have enabled the development of reliable self-driving cars, with sensors

playing a crucial role in environmental perception. This research focuses on synthetic data collection for

sensor-based perception and simulation-driven real-time object detection in autonomous driving applica-

tions.

Section 1.1 presents the necessary background information and highlights the significance of object

detection in autonomous driving. Section 1.2 defines the problem statement and outlines the objectives of

this research project. Lastly, Section 1.3 provides a detailed overview of the project’s structure.

1.1 Context and Motivation

The advancement of autonomous driving systems hinges on the capability to detect objects accurately and

efficiently in real time. Object detection, a fundamental task in computer vision, involves identifying and

localizing objects in images or video frames [1, 2]. This process is critical for enabling autonomous vehicles

to perceive their environment, make informed decisions, and navigate safely. Applications of object detec-

tion extend beyond autonomous driving to domains such as surveillance and robotics [1, 2, 3]. In the context

of autonomous driving, it underpins the ability to identify other vehicles, pedestrians, traffic signals, and

road signs, which is essential for avoiding collisions and responding to dynamic road conditions. The pre-

cision and speed of object detection algorithms are directly tied to the safety and reliability of autonomous

systems [1, 2].

A major challenge in developing autonomous driving systems is the collection of annotated real-world

datasets required for training and testing deep learning models for object detection. Acquiring these datasets

is expensive and time-intensive [4]. Autonomous driving simulators, such as CARLA, offer a scalable

and cost-effective alternative by generating synthetic datasets [5]. These simulators enable the creation of

diverse datasets with detailed annotations, covering a range of scenarios, including rare and hazardous situa-

tions. Additionally, simulation environments mitigate the risks associated with real-world testing, providing

researchers with controlled conditions for experimentation [5, 6].

1



1.2. Problem Statement 2

For example, the SHIFT dataset leverages the CARLA simulator to capture dynamic environments, pro-

ducing over 4,800 multi-view sensor sequences with comprehensive annotations for 2.5 million images [7].

Similarly, the CARLA-Loc Dataset integrates multiple sensors with precise calibration and synchronization,

providing valuable data for evaluating Simultaneous Localization and Mapping (SLAM) algorithms [8].

These datasets underscore the utility of CARLA in advancing autonomous driving technologies by enabling

synthetic data generation and serving as a robust testbed for evaluating autonomous driving systems.

1.2 Problem Statement

Developing robust autonomous driving systems depends on extensive and diverse datasets to train and eval-

uate object detection algorithms. However, real-world data collection is expensive, time-consuming, and

limited in its ability to capture rare or hazardous scenarios. Additionally, testing underdeveloped systems

in real-world environments can pose significant safety risks [6]. Simulation platforms, such as CARLA,

address these challenges by providing a controlled environment for generating synthetic datasets and con-

ducting experiments [9]. Despite these advantages, there is limited research on evaluating state-of-the-art

YOLO object detection models using synthetic data generated from complex simulation setups [10]. This

gap necessitates a systematic approach to assess the performance, generalizability, and robustness of such

models on synthetic data.

1.2.1 Objectives

This research project aims to achieve the following objectives:

• Simulation Setup: Develop a detailed simulation of a Tesla Model 3 equipped with 8 cameras, 12

ultrasonic sensors, and 1 radar. Establish a pipeline for collecting and storing sensor data from this

configuration.

• Dataset Creation: Generate a synthetic image dataset from the recorded camera data captured by the

Tesla Model 3’s camera sensors.

• YOLO Training: Train YOLO object detection models YOLOv8, YOLOv9, YOLOv10, and YOLO11

on the custom synthetic dataset and compare their performance.

• Real-Time Integration: Integrate one of the best-performing YOLO models based on highest lo-

calization precision and classification accuracy into the CARLA simulator to enable real-time object

detection within the simulation environment.



1.3. Outline 3

1.3 Outline

The structure of the rest of the Studienarbeit is as follows:

• Chapter 2: Background: This chapter introduces perception systems in autonomous driving, with

a particular focus on the CARLA Simulator and its customization capabilities, including the sensor

parameters used in simulating a Tesla Model 3. It also reviews the evolution of object detection meth-

ods, from traditional approaches to modern deep learning-based techniques, providing the necessary

foundation for understanding the project.

• Chapter 3: Related Work: This chapter examines the development of the YOLO series, tracing its

evolution from YOLOv1 to YOLO11. Additionally, it explores foundational models like Grounded-

SAM and their applications in automated labeling, offering insights into state-of-the-art object detec-

tion techniques.

• Chapter 4: Methodology: This chapter details the methodology for simulating the Tesla Model 3 in

CARLA, including sensor data collection, the creation of a customized image dataset, and the exe-

cution of real-time inference using a trained YOLO model. Unified Modeling Language (UML) dia-

grams are used to visually represent the workflow and interactions within the simulation framework,

enhancing clarity and understanding.

• Chapter 5: Experimental Setup and Evaluation Metrics: This chapter provides a detailed overview

of the technical setup, including the software, computational resources, and configurations required

for replicating the experiments. It also introduces the evaluation metrics used to assess the YOLO

models’ performance, ensuring a clear and reproducible methodology.

• Chapter 6: Results and Evaluation: This chapter presents the empirical findings, starting with an

Exploratory Data Analysis (EDA) of the dataset to highlight its structure and challenges. It then dis-

cusses the evaluation metrics, hyperparameter configurations, and experimental outcomes, combining

quantitative results with qualitative visualizations to assess model performance.

• Chapter 7: Discussion: This chapter critically examines the challenges, limitations, and broader

implications of the research. It situates the experimental results within the context of autonomous

driving and object detection, providing actionable insights for addressing limitations and advancing

the field.

• Chapter 8: Conclusion and Future Work: This final chapter summarizes the key findings, reflect-

ing on their alignment with the project’s objectives. It also identifies potential directions for future

research, paving the way for continued progress in autonomous driving technologies.



Chapter 2

Background

Building on the previous chapter, which outlined the objectives of this project, this chapter begins with an

overview to the perception systems in autonomous driving, the CARLA Simulator and the Tesla Model 3

autonomous vehicle. The discussion then shifts to the evolution of object detection methods, tracing the

progression from traditional methods to modern deep learning-based approaches.

2.1 Overview of Perception in Autonomous Driving

Recent advances in machine learning and deep learning have significantly improved the performance of

image classifiers, with Convolutional Neural Networks (CNNs) being the most widely used classifiers and

Vision Transformers (ViTs) representing the current state-of-the-art [11, 12, 13, 14, 15]. The success of

these methods relies heavily on high-quality annotated datasets, which are essential for supervised learning

algorithms [16]. In the context of self driving cars, we can categorise perception systems into two high-level

categories: internal and external perception systems.

Internal Perception Systems: Internal perception involves developing computer vision-based detection

systems for driver monitoring or driver assistance, facilitating human-machine interaction. This includes

systems that track driver attentiveness, monitor fatigue levels, detects distracted drivers and provide real-time

alerts or assistance to ensure driver safety through safe driving [17, 11, 16, 18, 19]. Advances in deep learn-

ing models, such as CNNs and ViTs, have enabled more accurate and efficient detection of driver behaviors

and conditions, crucial for enhancing human-machine interaction in semi-autonomous vehicles [20, 19, 21].

External Perception Systems: External perception pertains to the vehicle’s awareness of its surround-

ings. Autonomous vehicles (AVs) equipped with sensors such as LiDAR, cameras, radar, and ultrasonic

sensors must detect and interpret objects in their environment with the help of advance algorithms to ensure

4
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safe driving 1. These sensors provide comprehensive data for object detection, object localization, Simul-

taneous Localization and Mapping (SLAM), and sensor fusion, enabling the vehicle to navigate complex

environments safely [22, 23].

2.2 Key Components of Perception

Following are the key components in various perception systems:

• Camera: Camera-based perception systems capture visual data crucial for tasks such as object de-

tection, lane keeping, and traffic sign recognition. These systems provide essential visual context and

enable the vehicle to make informed decisions based on road conditions and traffic signs. [24, 25, 26,

27, 28] are some of the examples of camera based object detection methods which falls in external

perception category.

• LiDAR (Light Detection and Ranging): LiDAR sensors emit laser pulses to create detailed 3D maps

of the vehicle’s surroundings. These sensors are highly accurate in measuring distances and detecting

objects, making them indispensable for precise localization and obstacle detection. Recent advance-

ments in deep learning have significantly enhanced 3D object detection capabilities using LiDAR.

Techniques such as 3D object detection have shown promising results in improving the vehicle’s

environmental understanding. With ongoing developments, methods like PointRCNN, PointPillars,

and others have demonstrated substantial progress in leveraging LiDAR data for autonomous driv-

ing [29, 30, 31, 32, 33, 34, 35].

• Radar: Radar systems excel in detecting objects and measuring their speed, especially under adverse

weather conditions where cameras and LiDAR may struggle. They are highly effective for long-

range detection, making them essential for adaptive cruise control and collision avoidance systems.

Recent research has validated the effectiveness of radar in 3D object detection, with various studies

demonstrating its capability in enhancing situational awareness and safety in autonomous driving [36,

37, 38, 39, 40, 41].

• Ultrasonic Sensors: Ultrasonic sensors are primarily utilized for near-field perception in autonomous

driving, particularly for short-range detection tasks such as parking assistance. These sensors are es-

sential for detecting nearby objects and providing precise distance measurements in close proximity

to the vehicle. They are a low-cost, durable, and robust technology suitable for near-range detection

even in harsh weather conditions. Despite their advantages, ultrasonic sensors have received limited

attention in the perception literature [42, 43]. Recent advancements include the first end-to-end multi-

1https://solution1.com.tw/the-importance-of-environment-perception-technology-in-autonomous-driving/

- Accessed on January 20, 2025. This article highlights the critical role of environmental perception technology in enabling safe and

efficient autonomous driving.

https://solution1.com.tw/the-importance-of-environment-perception-technology-in-autonomous-driving/
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modal fusion model designed for efficient obstacle perception in a bird’s-eye-view (BEV) perspective,

integrating fisheye cameras and ultrasonic sensors [44].

• Sensor Fusion: Sensor fusion combines data from multiple sensors (e.g., LiDAR, radar, cameras) to

create a more comprehensive understanding of the environment. This approach leverages the strengths

of each sensor type to improve detection accuracy and robustness. For instance, LiDAR provides pre-

cise distance measurements, radar offers reliable velocity data, and cameras deliver rich contextual

information. By integrating these diverse data sources, fusion techniques enhance the overall percep-

tion capabilities of autonomous vehicles. This integration and its benefits are supported by several

research studies [45, 46, 47, 48, 49].

• V2X (Vehicle-to-Everything) Communication: Vehicle-to-Everything (V2X) communication en-

compasses Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications, allowing

vehicles to share information with each other and with roadside infrastructure. This collaborative per-

ception helps expand the sensory range and improve situational awareness, thus enhancing safety and

efficiency in autonomous driving. The advantages and implementations of V2X communication have

been explored in numerous research articles [22, 50].

2.3 CARLA Simulator

CARLA [5] is an open-source simulator designed to advance autonomous driving research by providing a

realistic yet controlled environment for developing, training, and validating autonomous driving systems.

It excels at generating synthetic datasets with precise annotations for objects such as traffic lights, signs,

vehicles, and pedestrians, significantly reducing the time and costs associated with manual data collection

and annotation.

CARLA uses the Unreal Engine to simulate different environmental conditions, including adverse weather,

which is critical for testing object detection algorithms under various scenarios [5]. It supports realistic sen-

sor simulations for cameras, LiDAR, radar, and Vehicle-to-everything (V2X) communication, making it an

ideal platform for developing and validating perception algorithms before real-world deployment [51]. The

simulator allows for the creation of large and diverse datasets, including rare and hazardous scenarios like

pedestrians with unusual body poses [52]. Such scenarios are essential for evaluating the robustness of

Simultaneous Localization and Mapping (SLAM) algorithms under dynamic conditions [53, 8].

Additionally, tools like CarFree enable the automatic generation of large-scale datasets with precise an-

notations, further reducing the manual effort and cost involved in data collection [54]. These features make

CARLA a crucial resource for advancing object detection technologies in autonomous driving, accelerat-

ing the development cycle, and ensuring that object detection models are robust, accurate, and ready for

deployment in complex urban environments [5, 54].
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2.4 Tesla Model 3

The Tesla Model 3 features an advanced sensor suite that includes 21 sensors: 8 RGB cameras, 1 radar

sensor, and 12 ultrasonic sensors as shown in figure 2.1. These sensors are strategically configured using

the available settings in CARLA on a simulated Tesla Model 3 to enable comprehensive environmental

perception, supporting accurate object detection and interaction under autonomous driving conditions [5].

Since the precise configuration and setup details of the Tesla Model 3 sensor suite are not publicly disclosed,

this project relies on informed assumptions and available data to replicate the sensor setup as closely as

possible.

Figure 2.1: Tesla Model 3 equipped with various sensors 2.

Key Sensor Parameters

This subsection discusses the key parameters for each sensor type integrated into the Tesla Model 3 within

the CARLA Simulator. It provides detailed descriptions of the configurable parameters available in CARLA,

highlighting their impact on the scope and accuracy of the data collection process [5, 56].

Camera Parameters: Cameras are configured with the following parameters:

• Field of View (FOV): Represents the angular extent of the observable environment captured by the

camera. A narrow FOV (e.g., 35°) focuses on distant objects, enabling detailed long-range observa-

2https://www.eetimes.com/a-tesla-model-3-tear-down-after-a-hardware-retrofit/ - Accessed on January 20,

2025. This article provides an image of Tesla Model 3 equipped with a sensor suite generated by System Plus Consulting.

https://www.eetimes.com/a-tesla-model-3-tear-down-after-a-hardware-retrofit/


2.4. Tesla Model 3 8

Figure 2.2: Tesla Model 3 sensors range and perception overview [55].

tions, whereas a wide FOV (e.g., 120°) captures more peripheral information, crucial for detecting

nearby objects or vehicles [56].

• Position: Defines the camera’s location relative to the vehicle’s coordinate frame (x,y,z). Strategic

placement ensures unobstructed views, minimizes occlusions, and maximizes environmental cover-

age [56].

• Rotation: Specifies the camera’s orientation using pitch (tilt), yaw (horizontal angle), and roll (rota-

tion about the axis). These parameters determine the camera’s focus direction and coverage angle [56].

• Resolution: Refers to the dimensions of the captured image, measured in pixels (e.g., 1280x960).

Higher resolution ensures finer detail, essential for object detection, though it demands greater com-

putational resources [56].

• Sensor Tick: Defines the interval (in seconds) at which the camera captures frames. For this simula-

tion, a tick rate of 0.033 seconds (corresponding to 30 FPS) ensures smooth and temporally consistent

image sequences [56].

Radar Parameters: Radar sensors provide critical distance and velocity measurements, particularly for

long-range object detection. Their parameters include:

• Horizontal FOV: Specifies the angular detection range across the horizontal plane (e.g., 35°). This

parameter determines the radar’s lateral scanning capability [56].
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• Vertical FOV: Represents the angular detection range in the vertical plane (e.g., 5°). A narrower

vertical FOV ensures focused sensing in a specific elevation range [56].

• Range: Defines the maximum distance (in meters) within which objects can be detected (e.g., 160

meters). This parameter is vital for highway scenarios and long-range obstacle detection [56].

• Sensor Tick: The time interval (in seconds) between consecutive data captures (e.g., 0.033 seconds).

This ensures temporal consistency in object tracking [56].

• Points Per Second: Represents the number of data points the radar can generate per second (e.g.,

1500 points/sec). This defines the density and precision of the radar’s output data [56].

• Position: Specifies the mounting location of the radar sensor relative to the vehicle’s coordinate frame

(x,y,z). Proper positioning ensures unobstructed forward detection [56].

• Rotation: Describes the sensor’s orientation in pitch, yaw, and roll, enabling precise alignment with

the desired detection area [56].

Ultrasonic Sensor Parameters: Ultrasonic sensors are designed for short-range obstacle detection, espe-

cially useful during low-speed maneuvers. Their parameters are as follows:

• Horizontal FOV: Defines the angular sensing range in the horizontal plane (e.g., 60°). This broad

coverage is ideal for detecting nearby objects such as curbs or parked vehicles [56].

• Vertical FOV: Specifies the angular sensing range in the vertical plane (e.g., 5°). This limited vertical

coverage is optimized for detecting obstacles near ground level [56].

• Range: Refers to the maximum sensing distance of the sensor (e.g., 5 meters). Ultrasonic sensors are

calibrated for close-proximity applications such as parking assistance [56].

• Sensor Tick: Defines the interval between consecutive data captures (e.g., 0.033 seconds). This

ensures real-time responsiveness during maneuvering [56].

• Position: Describes the location of the sensor relative to the vehicle’s coordinate frame (x,y,z). Ul-

trasonic sensors are symmetrically placed along the vehicle’s front and rear to provide complete cov-

erage [56].

• Rotation: Indicates the orientation of the sensor using pitch, yaw, and roll angles. For example,

a forward-facing ultrasonic sensor may have a slight downward pitch to focus on low-lying obsta-

cles [56].
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2.5 Traditional Object Detection Techniques

The journey of object detection in computer vision began in the 1960s [57], marked by the pioneering work

of Roberts who emphasized the need for matching two-dimensional image features to three-dimensional ob-

ject representations [58]. This era laid the foundational work for what would later evolve into more complex

systems. By the early 1970s, the field had seen significant advancements, such as the development of fully

automated assembly machines, which utilized image processing for tasks like semiconductor device assem-

bly [59]. The term “machine vision” originated in Japan at Hitachi Labs [57]. This concept was defined with

a focus on practical applications, laying the groundwork for its pivotal role in industrial automation [60]. In

traditional computer vision, object detection encompasses several tasks: starting with detection (identifying

the presence of an item), followed by localization (determining the precise location of the item), recognition

(identifying and locating all items in an image), and finally, understanding (recognizing items and their roles

within a context) [61, 62]. These tasks build upon each other to form a comprehensive vision system capable

of interpreting complex scenes [57].

Viola-Jones Detector: Introduced in 2001 by Paul Viola and Michael Jones [63], the Viola-Jones detector

was a pivotal development in real-time human face detection. This method, which leverages integral images,

Haar-like features, and a cascading classifier system, significantly advanced the efficiency and accuracy of

object detection. However, it has limitations such as struggling with non-frontal faces or varying lighting

conditions. The integral image component is crucial as it allows for the quick calculation of features across

the image, enabling constant-time computation. The AdaBoost machine learning technique enhances detec-

tion accuracy by focusing on predictive features, although it may still miss complex facial features under

challenging conditions. Moreover, the sliding window approach employed in the detection process might

not efficiently detect faces under rapid motion or varied poses [63, 64, 65].

Histogram of Oriented Gradients (HOG): Developed in 2005 by Navneet Dalal and Bill Triggs [66], the

HOG descriptor enhances object detection, particularly for pedestrian detection, by providing a detailed rep-

resentation of object shapes. The process starts with calculating the image gradients to highlight edges and

contours, but it may struggle in cluttered backgrounds. Spatial and orientation binning captures dominant

gradient orientations but can falter with non-rigid or oddly shaped objects. The block normalization step

ensures consistency of features across different lighting conditions, although it may not be effective under

extreme variations. The descriptor formation creates a robust feature descriptor that encapsulates essential

shape and edge information but lacks the flexibility needed for complex object detection scenarios [66, 67].

Deformable Part-based Model (DPM): Proposed in 2008 by Pedro Felzenszwalb and colleagues [68],

DPM offers flexible object detection but is computationally demanding. It includes a root filter and multiple

part filters, allowing for robust detection but at the cost of increased computational complexity. The training
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process is extensive and can be a barrier for real-time applications. The detection phase, which utilizes a

feature pyramid and dynamic programming, achieves high accuracy but may not perform well in resource-

constrained environments. DPM is adept at managing occlusions and variations in object pose, making it

versatile yet slower compared to newer, more efficient algorithms [68, 69, 67].

Comparative Analysis: These traditional methods each contributed uniquely to the field. Viola-Jones

was revolutionary for real-time applications but limited by rigid detection scenarios. HOG provided robust

feature descriptions ideal for pedestrian detection but was less effective in complex, dynamic environments.

DPM excelled in accuracy and adaptability but at the expense of computational efficiency. The limitations of

these methods spurred the development of deep learning techniques, which address many of their constraints

through enhanced learning capabilities and greater adaptability [57, 69, 64, 65].

2.6 Deep Learning-Based Object Detection Methods

Deep learning has revolutionized the field of object detection by introducing sophisticated hierarchical archi-

tectures that surpass traditional feature-engineering approaches. As detailed in figure 2.3, these techniques

are categorized into CNN-based [70] and transformer-based [71] approaches. They automate the extraction

of semantic features, significantly improving detection capabilities in various applications [72].

2.6.1 CNN-based Methods

CNN-based object detection is primarily categorized into two principal types: two-stage object detection

and one-stage object detection. The two-stage models primarily utilize regions of interest (RoI) to build

candidate bounding boxes, subsequently extracting features from these boxes to identify objects. Conse-

quently, all models inside the Region Proposal Based Framework are classified as two-stage detectors. In

comparison, the one-stage methods do not use RoI mechanism to locate objects, both steps are combined in

just one stage, regression and classification based models like YOLO, SSD, RetinaNet as well as end to end

detection based modes like DETR model series falls under one stage detection category [72].

Region Proposal Based Framework: The Region-based Convolutional Neural Network (R-CNN) [73]

is an innovative technique in object detection that integrates region proposal methods with deep learning

to achieve accurate object localization and classification. It operates by first generating potential object

regions using a method like Selective Search [74], then classifying these regions using a convolutional

neural network (CNN) that has been fine-tuned for the task. R-CNN Object Detection system takes an input

image, extracts bottom-up region proposals, computes features for each proposal using a large convolutional

neural network (CNN), and then classifies each region using class-specific linear SVMs [75, 76]. R-CNN

Object Detection Process can be divided into following four parts:
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Figure 2.3: Hierarchical classification of deep learning-based object detection methods as adapted from [72]. This figure showcases

the division into CNN-based and transformer-based methodologies, illustrating their distinct frameworks and evolutionary trajectories

in object detection technology.

• Region Proposal: R-CNN begins by using Selective Search to generate a set of region proposals,

which are potential areas in the image that may contain objects. This step is crucial for narrowing

down the areas that need to be analyzed further [73, 77, 72].

• Feature Extraction and Classification: Each proposed region is then passed through a CNN that has

been pre-trained on a large dataset. The CNN extracts features from these regions and classifies them

into object categories [73, 77, 72].

• Bounding Box Regression: To improve localization accuracy, R-CNN applies bounding box regres-

sion to refine the coordinates of the detected objects [73, 77, 72].

• Non-Maximum Suppression: Finally, non-maximum suppression is used to eliminate overlapping

bounding boxes, ensuring that only the most accurate detections are retained [73, 77, 72].

The R-CNN family represents a significant evolution in object detection, beginning with the original R-

CNN model, which introduced the concept of using region proposals for object detection. This was further
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enhanced by SPP-Net [78], which added a spatial pyramid pooling layer to handle inputs of varying sizes

more efficiently. Fast R-CNN [79] improved upon this by integrating the ROI (regions of interest) pooling

layer, which significantly sped up the process by sharing computations across the entire image, eliminating

the need for repetitive feature extraction for each region proposal. Faster R-CNN [80] took this a step further

by introducing the Region Proposal Network (RPN), which made the generation of region proposals nearly

cost-free by sharing features with the detection network. Lastly, the Feature Pyramid Network (FPN) [81]

built on these foundations by creating a multi-scale feature pyramid that improves performance across dif-

ferent object scales, effectively handling the detection of objects at varying resolutions by maintaining a

balance between resolution and semantic strength at different levels of the network. Together, these models

form a robust framework for addressing a wide range of challenges in object detection.

Regression/Classification Based Framework: The Regression/Classification Based Framework for ob-

ject detection simplifies the detection process by eliminating the need for explicit region proposal generation,

enabling faster and more efficient detection models [72]. YOLO (You Only Look Once) [82] is a ground-

breaking model that processes the entire image at once to predict bounding boxes and class probabilities,

significantly enhancing detection speed and making it suitable for real-time applications. SSD (Single Shot

Detector) [83] advances this approach by utilizing multiple feature maps at different resolutions to improve

detection accuracy across a variety of object sizes, integrating a set of predefined anchor boxes for various

aspect ratios and scales. RetinaNet [84] addresses the challenge of class imbalance with the introduction of

focal loss, which focuses training on hard-to-classify examples to improve overall accuracy. Collectively,

these models represent significant advancements in the ability to detect objects directly from full images,

efficiently and accurately, without the complex multi-stage pipeline characteristic of earlier models.

2.6.2 Transformer-based Methods

The advancement of end-to-end detection frameworks using transformer [71] architecture has revolutionized

object detection by simplifying the detection process and enhancing the models’ capabilities [72]. A semi-

nal example, DETR (Detection Transformer) [85], treats object detection as a direct set prediction problem,

removing the need for complex procedures such as non-maximum suppression and anchor boxes, while

employing a straightforward encoder-decoder structure. Building on DETR’s foundations, Deformable

DETR [86] introduces deformable attention mechanisms that focus on a small set of key sampling points to

improve model efficiency and performance on small objects. This modification not only enables faster con-

vergence—up to ten times quicker than its predecessor—but also enhances overall detection performance.

However, it introduces new challenges such as a significant increase in the number of encoder tokens and a

heightened computational load due to the encoder attention mechanisms [87]. To address these limitations,

further innovations have been proposed. For instance, Sparse DETR optimizes computational efficiency by

selectively updating only those tokens that are likely to be referenced by the decoder, thus significantly re-

ducing the computational burden while maintaining robust detection capabilities [87]. Moreover, Efficient
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DETR [88] innovatively leverages a dense prior to initialize object containers, thereby narrowing the perfor-

mance gap associated with different numbers of decoder layers. This series of advancements underscores

the transformative impact of transformer-based methods in the realm of object detection.

The Vision Transformer (ViT) [14] further extends transformers to vision tasks by processing images

as sequences of fixed-sized patches, enabling global context capture without convolutional layers. DeiT

(Data-efficient Image Transformer) [89] optimizes ViT for practical applications by using techniques like

knowledge distillation [90] to enhance training efficiency with less data [72]. CaiT (Class-attention in Im-

age Transformers) [91] refines this approach by focusing more on class tokens through specialized class-

attention layers, enhancing model accuracy and training stability. Lastly, CvT (Convolutional vision Trans-

former) [92] integrates convolutions into the transformer architecture, balancing the extraction of local and

global features to better accommodate diverse visual tasks. Together, these models underscore the trans-

formative impact of integrating transformers into object detection, setting new standards for efficiency and

accuracy.



Chapter 3

Related Work

Building on the previous chapter, which covered the classification of perception systems essential to au-

tonomous driving, introduced the CARLA Simulator and the Tesla Model 3 autonomous vehicle, and dis-

cussed the evolution of object detection methods, this chapter will delve deeper into the evolutionary tra-

jectory of the YOLO series, tracing its development from YOLOv1 through to YOLO11. Additionally,

this chapter provides details about the foundation models such as GroundedSAM and their applications in

automated labeling.

3.1 Selecting YOLO: A Rationale

Variations in image resolutions and aspect ratios pose substantial challenges in object detection, particularly

when the target objects vary significantly in size. This issue is compounded by class imbalance, where

some classes are underrepresented in the training dataset, leading to biased model predictions. These chal-

lenges are documented in the literature [93]. Furthermore, the computational demands of object detection

architectures—which require significant power, memory, and processing time—are considerable, posing a

challenge for their deployment in resource-constrained environments [94, 95]. While two-stage detectors

are known for their high accuracy, their computational intensity often renders them impractical for real-time

applications.

In contrast, single-stage detectors, which streamline the detection process by eliminating the need for

a separate region proposal generation, provide a more efficient alternative. These models are characterized

by their faster processing times and reduced computational overhead, making them ideal for use in environ-

ments where resources are limited. Among single-stage detectors, YOLO stands out due to its simplicity

and efficiency, offering robust accuracy and the capability for real-time performance, which are crucial for

the deployment in dynamic environments like autonomous driving [96].

15
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3.2 YOLO: You Only Look Once

The YOLO stands for You Only Look Once. The YOLO model offered a transformative approach to ob-

ject detection by conceptualizing it as a regression problem. It employed a highly efficient architecture

comprising 24 convolutional layers followed by 2 fully connected layers as shown in the figure 3.1. The

convolutional layers, initially pretrained on the ImageNet [97] classification task at a resolution of 224 ×

224, are then adapted to double the resolution for more effective detection. The YOLO architecture seg-

Figure 3.1: YOLO Architecture. This figure depicts the neural network architechture of the YOLO model. Adapted from [82]

ments the image into an S× S grid, where each grid cell predicts B bounding boxes and their confidence

levels, along with C class probabilities. This prediction format encapsulates the bounding boxes’ dimen-

sions (x,y,w,h) and the confidence score, which estimates the Intersection Over Union (IOU) between the

predicted box and the ground truth. Additionally, each grid cell calculates C conditional class probabilities,

factoring in only the presence of an object as depicted in the figure 3.2.

Figure 3.2: Modeling detection task as a regression task. Adapted from [82]
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Figure 3.3: Workflow of the YOLOv1 object detection system. Initially, the input image is resized to a resolution of 448×448 pixels.

Subsequently, the image is processed through a single convolutional neural network to identify potential objects. The final stage

involves applying a threshold to the detected objects based on the model’s confidence scores to ascertain the final detections [82].

Capabilities and Limitations: Despite its advanced capabilities and rapid processing speed—45 frames

per second for the standard model and 155 frames per second for the lighter version named Fast YOLO

—the YOLO framework suffered from notable limitations [82]. The YOLO framework imposes strict spatial

constraints as each grid cell can only predict two boxes and assign one class label per box. This limitation

hampers its ability to detect multiple nearby objects, particularly small ones that appear in clusters, like

flocks of birds. The model’s reliance on data to predict bounding boxes also restricts its effectiveness with

objects that exhibit unusual aspect ratios or configurations, as it predominantly learns from common object

appearances and may use coarser features due to multiple downsampling layers. Moreover, the model’s loss

function, designed to approximate overall detection performance, does not differentiate between errors in

large versus small bounding boxes, leading to disproportionately high impacts from minor inaccuracies in

smaller boxes. The primary source of errors in YOLO typically stems from these incorrect localizations [82].

3.3 Evolution of YOLO Models

The YOLO (You Only Look Once) series, pioneered by Redmon et al. [82], revolutionized object detection

by introducing a single-stage detector capable of processing images in real time with significant accuracy.

Figure 3.4 illustrates the chronological development of various YOLO models, tracing their evolution from

the initial launch in 2015 through to the latest iteration in 2024. This visual representation provides a clear

overview of the progressive enhancements and expansions in the YOLO architecture over nearly a decade.
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Figure 3.4: Timeline of YOLO Models. This figure is inspired from [98].

YOLOv2: Introduced in 2016 by Redmon and Farhadi [99], the YOLO9000 paper (also known as

YOLOv2) implemented several crucial improvements to the YOLOv1 framework to enhance recall, lo-

calization accuracy, and classification efficacy. Incorporating batch normalization across all convolutional

layers, YOLOv2 saw a significant boost in model convergence and performance, leading to a 2% increase

in mean Average Precision (mAP) and obviating the need for dropout. Pre-training the network at a higher

resolution of 448x448 allows it to better adapt to high-resolution inputs, improving mAP by nearly 4% [99].
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Figure 3.5: The Darknet-19 architecture used in YOLOv2. It features 19 convolutional layers and 5 max-pooling layers, optimizing for

efficient feature extraction and down-sampling. This streamlined design incorporates 1 x 1 convolutions to enhance feature integration,

significantly improving detection capabilities. [99].

Further enhancements include the use of convolutional anchor boxes, which refine the model’s resolution

and accuracy in localization, and dimension clusters that optimize anchor shapes through k-means cluster-

ing based on Intersection Over Union (IOU) scores. The introduction of direct location prediction enhances

training stability by constraining bounding box coordinates to a [0,1] range, resulting in a 5% increase in

mAP. Additionally, a passthrough layer enhances detection sensitivity for smaller objects, contributing a

marginal performance increase of 1%. Finally, multi-scale training dynamically adjusts input sizes, boost-

ing the model’s adaptability to various resolutions and balancing speed with accuracy, thereby maintaining

exceptional performance on benchmarks while still achieving real-time processing speeds [99].

YOLOv3: Building upon its predecessors, YOLOv3, introduced by Redmon and Farhadi [100] in 2018,

markedly enhances object detection capabilities by incorporating multi-scale detection and an objectness

score for bounding boxes, particularly improving the detection of smaller objects [98]. Utilizing the Darknet-

53 backbone, as depicted in Figure:3.6, this version enhances feature representation and mitigates the van-

ishing gradient problem. Moreover, YOLOv3 employs a similar concept to Feature Pyramid Networks

(FPN) [81] for detecting objects at three different scales and diverges from previous softmax approaches

by using logistic regression for objectness scores and independent logistic classifiers for each class. These
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advancements make YOLOv3 particularly effective in real-time object detection scenarios [100].

Figure 3.6: The Darknet-53 architecture, employed as the feature extractor in YOLOv3, supersedes the Darknet-19 used in earlier

iteration. This model comprises 53 convolutional layers, including alternating 3x3 and 1x1 convolutions, enhanced by residual con-

nections inspired by ResNet. These connections mitigate the vanishing gradient problem, facilitating the learning of complex feature

representations in deep networks, thus enhancing detection performance. [100, 101].

YOLOv4 and YOLOv5-Advances in Architecture: Introduced in April 2020 by Bochkovskiy et al.

[102], YOLOv4 represents a significant advancement in the architecture of object detection models, en-

hancing both detection accuracy and robustness while maintaining real-time performance [102]. This model

integrates key architectural components that define modern object detectors: a pre-trained backbone, a neck

consisting of various feature aggregation paths, and heads for predicting object classes and bounding boxes.

Specifically, YOLOv4 incorporates the CSPDarknet53 [95] backbone, a SPP module [103], and a modified

PANet [104] path-aggregation neck, complemented by mechanisms like Cross-Iteration Batch Normaliza-

tion (CBN) [105] and Spatial Attention Module (SAM) [106]. These features cpmbined with the use of

multiple anchor points for single ground truth detection collectively improve the selection ratio of posi-

tive samples and boundary detection accuracy, underscored by the adoption of Complete Intersection over

Union (CIoU) loss for enhanced localization [102]. Figure 3.7 illustrates the components of the YOLOv4

object detector, depicting the integration of backbone, neck, and heads in a structured manner.
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Figure 3.7: Block diagram of object detectors focusing on YOLOv4, illustrating the architectural divisions into input stage, feature

extraction stage (backbone and neck), and prediction stage (heads). The diagram also abstracts the structure of object detectors into

one-stage and two-stage categories, highlighting the differences in how these models process inputs to produce dense and sparse

predictions, respectively. Adapted from [102].

Shortly after the release of YOLOv4, YOLOv5 was launched in 2020 by Glenn Jocher and managed

by Ultralytics [107, 96]. Unlike its predecessor, YOLOv5 departs from the Darknet framework, utilizing

PyTorch to facilitate accessibility and extend usability, particularly beneficial due to PyTorch’s user-friendly

interface. The architecture of YOLOv5 is built upon a Cross-Stage-Partial-connections (CSP) [95] based

CSPNet backbone derived from ResNet [101], enhanced by Spatial Pyramid Pooling (SPP) blocks and a Path

Aggregation Network (PANet) module for more effective feature extraction and aggregation across multiple

scales. Its prediction mechanism employs anchor-based strategies with a loss function that combines Binary

Cross-Entropy and CIoU, aiming to optimize class detection, objectness, and localization performance. Un-

like YOLOv4, which uses predefined anchor boxes, YOLOv5 can auto-learn anchor sizes directly from the

training data during the training process. This leads to better adaptation to specific datasets and potentially

improves detection performance. [107, 108, 96].

PP-YOLO: Building upon the advancements of its predecessors, PP-YOLO was introduced by Long et al.

[109] in August 2020, utilizing the foundational YOLOv3 framework to develop an object detector that

achieves a commendable balance between effectiveness and efficiency, suitable for real-world applications.
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Operating within the PaddlePaddle ecosystem developed by Baidu, PP-YOLO surpasses YOLOv4 in per-

formance by incorporating a series of refined techniques derived from subsequent research [110, 102, 111,

112, 113, 114, 78, 115].

A significant enhancement in PP-YOLO is the replacement of the DarkNet-53 backbone used in YOLOv3

with the ResNet50-vd-dcn, which includes deformable convolutional layers (DCNs). The adoption of the

ResNet50-vd-dcn backbone not only optimizes the balance between performance and computational effi-

ciency but also enhances the multi-scale detection capabilities of the model. Additional improvements in

PP-YOLO include the use of DropBlock regularization [110] within the Feature Pyramid Network (FPN)

neck, enhancing model generalization by preventing co-adaptation of feature detectors. Matrix NMS [113]

is employed for more efficient and accurate non-maximum suppression, while CoordConv layers [114] pro-

vide the network with spatial context, aiding in improved localization. Furthermore, the model integrates

IoU Loss [111] and IoU-aware detection [112], which refine prediction accuracy aligned with the mean Av-

erage Precision (mAP) metric. Additionally, PP-YOLO employs Grid Sensitive techniques [102] to enhance

the handling of anchor box boundaries, ensuring that the boxes are more accurately aligned with the detected

objects. It also utilizes Spatial Pyramid Pooling (SPP) [78], a method that aggregates and processes spatial

features from various scales, thus bolstering the model’s robustness in detecting objects across different

resolutions. The incorporation of a distilled ResNet50-vd model as a pre-trained backbone [115] leverages

enhanced transfer learning capabilities, making PP-YOLO a potent tool for object detection tasks [109].

Advancing YOLO- Diverse Architectural Innovations: Following the trajectory set by earlier mod-

els, the YOLO architecture continued to evolve with Scaled-YOLOv4. Scaled-YOLOv4, introduced by

Wang et al. [116], scales the CSPDarknet53 to boost performance across various network sizes, benefiting

from training techniques used in YOLOv5 for enhanced performance even in scaled-down versions [116].

YOLOR, emerging in the subsequent period, integrates multi-task learning by blending explicit and implicit

knowledge to enhance shared representations, which aids in reducing the parameter count while ensuring

competitive performance across tasks like object detection and image captioning [117]. YOLOS redefines

the application of Transformers to vision, adopting a minimalistic approach to the Vision Transformer ar-

chitecture to deliver significant results with minimal reliance on conventional convolutional networks [118].

YOLOX, surpassing previous YOLO iterations in 2021, adopts an anchor-free detection method, integrat-

ing a decoupled head and SimOTA for advanced label assignment, achieving state-of-the-art results [119].

Lastly, PP-YOLOv2, released by Baidu in April 2021, advances PP-YOLO with enhancements like the

Mish activation function and a Path Aggregation Network, optimizing performance while maintaining high

inference speeds [120, 98].

YOLOv6: YOLOv6, introduced in 2022 by Li et al. [121], is designed for industrial applications with

a hardware-conscious architecture. Key components include the EfficientRep backbone, Rep-PAN neck,

and an Efficient Decoupled Head, all optimized for accuracy and efficiency. Smaller networks use Rep-
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Block [122] as the backbone, while larger networks employ the CSPStackRep block [121]. Task Alignment

Learning (TAL) [123] is adopted for label assignment, and RepOptimizer [124] ensures quantization-friendly

weights. Quantization-Aware Training (QAT) with channel-wise distillation [125] and graph optimization

further enhance performance. YOLOv6 employs VariFocal Loss [126] for classification and SIoU [127] or

GIoU [128] for regression, achieving substantial performance gains.

YOLOv7: That same year, YOLOv7, introduced by Wang et al. [129], set a new benchmark in real-time

object detection by optimizing memory utilization and gradient propagation through its Extended-ELAN (E-

ELAN) architecture. E-ELAN enhances learning capability without disrupting gradient pathways, utilizing

expand, shuffle, and merge cardinality operations. YOLOv7 introduces trainable bag-of-freebies, including

batch normalization integration, implicit knowledge from YOLOR [117], and an Exponential Moving Aver-

age (EMA) model for inference optimization. Key innovations include planned model re-parameterization

to improve gradient propagation and a coarse-to-fine dynamic label assignment strategy for multi-output

layers. Additionally, YOLOv7 proposes extended and compound scaling methods to effectively utilize pa-

rameters and computation, achieving approximately 40% reduction in parameters and 50% reduction in

computation compared to previous state-of-the-art detectors, while delivering faster inference speeds and

higher accuracy [129].

YOLOv8: YOLOv8 [130], released in 2023 by Ultralytics, introduces significant architectural advance-

ments to enhance performance and efficiency in real-time object detection as depicted in figure 3.8. Key

components of its architecture include the C2f module, which features two parallel gradient flow branches

to improve gradient information flow and overall model robustness [130, 131]. The model also incorpo-

rates the Spatial Pyramid Pooling Fusion (SPPF) layer, a feature shared with YOLOv5, to extract contextual

information from images at varying scales, enhancing generalization capabilities [107]. The backbone, CSP-

Darknet53, facilitates feature extraction, while the neck adopts Path Aggregation Network (PAN) principles,

with modifications to the Feature Pyramid Network (FPN), such as replacing the C3 module with the C2f

module and removing convolutional structures during upsampling [130, 132, 131]. Additionally, YOLOv8

removes the objectness branch and employs a decoupled head in the prediction stage, separating classifi-

cation and detection heads to optimize outputs. YOLOv8 supports a wide range of tasks, including object

detection, instance segmentation, pose estimation, and classification, with pre-trained models available to

suit various application requirements [130].
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Figure 3.8: Detailed architecture diagram of YOLOv8, illustrating the model’s backbone, feature extraction modules, and detection

heads. The diagram showcases key components such as the CSPDarknet backbone, SPPF layer, C2f modules, and multi-scale detection

modules [130, 132]. This detailed visualization of the YOLOv8 architecture was created by GitHub user RangeKing [133].

YOLOv9: The YOLOv9 [134] architecture introduced in 2024, represents a significant leap in object

detection by introducing two major innovations: Programmable Gradient Information (PGI) and the Gen-

eralized Efficient Layer Aggregation Network (GELAN). PGI tackles challenges such as information bot-
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tlenecks and unreliable gradient updates in deep neural networks through the use of auxiliary reversible

branches. These branches ensure that gradients remain accurate and effective, even in lightweight and shal-

low networks. GELAN, an evolution of ELAN [135], integrates gradient path planning from CSPNet [95]

and ELAN to balance lightweight design, inference speed, and accuracy. This novel architecture extends

ELAN’s capabilities by supporting a wide range of computational blocks, making it highly adaptable to

various inference devices. By combining PGI and GELAN, YOLOv9 achieves state-of-the-art performance,

surpassing previous methods in both parameter efficiency and accuracy, while offering substantial improve-

ments for lightweight models [134].

YOLOv10: Wang et al. [136] introduced YOLOv10 in 2024, targeting the challenges of accuracy and

efficiency in real-time object detection. A defining feature of YOLOv10 is its NMS-free framework, which

eliminates the reliance on non-maximum suppression during post-processing, significantly reducing infer-

ence latency while maintaining robust performance. The model incorporates a consistent dual assignment

strategy, as illustrated in Figure 3.9. During training, a one-to-many head enriches supervision by generat-

ing multiple positive samples for each instance, while a one-to-one head ensures precise label assignment.

These heads are jointly optimized, allowing the backbone and neck to leverage the complementary strengths

of both branches. For inference, the one-to-many head is discarded, and the one-to-one head exclusively

generates predictions, streamlining the process without additional computational overhead.

Figure 3.9: Illustration of YOLOv10’s dual label assignment strategy and consistent matching metric. The one-to-many head provides

enriched supervision during training, while the one-to-one head ensures precise predictions during inference. The consistent matching

metric harmonizes the optimization of both heads by balancing classification scores, spatial priors, and IoU, enabling efficient and

accurate real-time object detection [136].

A consistent matching metric, depicted in Figure 3.9, harmonizes the optimization of the one-to-one and

one-to-many heads by quantitatively evaluating concordance between predictions and ground truths. This

metric balances the classification score, spatial prior, and Intersection over Union (IoU) through tunable

hyperparameters, ensuring alignment between the two branches. Complementing this innovative training

strategy are architectural refinements such as lightweight classification heads, spatial-channel decoupled
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downsampling, and rank-guided block designs, all of which enhance computational efficiency. Addition-

ally, YOLOv10 leverages large-kernel convolutions for broader receptive fields and partial self-attention for

improved feature representation, achieving superior detection accuracy with minimal computational cost.

These advancements established YOLOv10 as a state-of-the-art real-time object detection system of its time,

offering remarkable accuracy, scalability, and efficiency across various model scales [136].

YOLO11: Concluding the evolution of the YOLO series, YOLO11 [137] represents the pinnacle of real-

time object detection technology, encapsulating years of progressive innovations. Building upon the founda-

tion laid by its predecessors, YOLO11 introduces the Cross-Stage Partial with Kernel Size 2 (C3k2) block,

a more efficient alternative to the C2f block from YOLOv8 (refer to Figure 3.10). This architectural en-

hancement significantly boosts computational efficiency and processing speed. Furthermore, the integration

of advanced modules like Spatial Pyramid Pooling - Fast (SPPF) and Convolutional Block with Parallel

Spatial Attention (C2PSA) elevates feature extraction capabilities and detection precision to new heights,

making YOLO11 a transformative advancement in real-time object detection [138, 137].

Figure 3.10: Key architectural modules- SPPF, C2PSA, and C3k2 in YOLO11. Figure adapted from [138].

Designed with versatility in mind, YOLO11 seamlessly adapts across diverse deployment environments,

ranging from resource-constrained edge devices to cloud platforms and GPU-accelerated systems. It extends

its support to a broad spectrum of computer vision tasks, including object detection, instance segmentation,

image classification, pose estimation, oriented object detection, and even object tracking [139]. As the latest

milestone in the series, it sets a new standard for real-time computer vision, reinforcing YOLO’s legacy as a

transformative force in the field.

Table 3.1 summarizes nearly a decade of advancements in YOLO models, spanning from 2015 to 2024,

along with their respective sources for further reading. For a more comprehensive analysis, readers can refer

to the provided citations for detailed insights into each YOLO model. In essence, each iteration of the YOLO

series has significantly advanced real-time object detection by improving speed, accuracy, and adaptability
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across diverse computing environments, reinforcing YOLO’s pivotal role in computer vision.

3.4 Foundation Models in AI

The term “foundation model” was introduced by researchers at the Stanford Center for Research on Foun-

dation Models and the Stanford Institute for Human-Centered Artificial Intelligence (HAI) in their 2021

paper titled “On the Opportunities and Risks of Foundation Models”. This seminal work defined foundation

models as large-scale machine learning systems trained on extensive and diverse datasets, often leveraging

self-supervised or semi-supervised learning techniques. These models are designed to generalize across var-

ious downstream tasks and can be fine-tuned for specific applications, making them a cornerstone of modern

Artificial Intelligence (AI) [143].

A notable example of a foundational model in computer vision is CLIP (Contrastive Language–Image

Pretraining) [144], developed by OpenAI. CLIP aligns visual and textual representations, enabling tasks

like image classification and object recognition in a zero-shot fashion. This means that the model can

perform tasks on data it has never explicitly seen during training. In the domain of object detection, YOLO-

NAS [141], developed by Deci AI, exemplifies another foundational model. YOLO-NAS combines Neural

Architecture Search (NAS) techniques with pre-training on large datasets and a quantization-aware design,

achieving superior efficiency and accuracy in real-world applications [141].

Zero-shot segmentation refers to a model’s ability to segment objects in an image or video without

requiring prior training on the specific object or domain [145]. A key example of this is the Segment

Anything Model (SAM) [146], developed by Meta AI in 2023. SAM enables users to segment objects using

prompts such as points, bounding boxes, or text, and demonstrates exceptional generalization across diverse

datasets and tasks [146]. Similarly, Grounding DINO [147], developed by IDEA Research, specializes in

zero-shot object detection, allowing the model to detect and localize arbitrary objects in images based on

textual prompts without task-specific training [148]. This flexibility makes it highly effective for open-set

object detection scenarios.

By combining the segmentation capabilities of SAM with the object detection strengths of Grounding

DINO, GroundedSAM [149] emerges as a powerful composite model. GroundedSAM leverages textual

prompts for object detection and refines results using pixel-perfect segmentation masks. This innovative

integration showcases how foundational models can be assembled to create versatile tools for specific appli-

cations. One of the most significant applications of GroundedSAM is in dataset labeling. It can automate

the generation of precise bounding boxes and segmentation masks, streamlining the creation of annotated

datasets. This capability accelerates the development of high-quality datasets for fields such as autonomous

vehicles, and industrial inspection, reducing manual effort and transforming workflows [150, 151, 149].
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Table 3.1: Summary of Advancements in YOLO Models

Model Year Advancements Supported Tasks and Modes

YOLOv1 [82] 2015 One-shot object detector Object Detection, Basic Classi-

fication

YOLOv2 [99] 2016 Darknet-19 Framework, Batch Normalization,

High Resolution Classifier, Convolutional With

Anchor Boxes, Dimensional clustering, Direct

location prediction, Multi-scale training

Object Detection, Improved

Classification

YOLOv3 [100] 2018 Objectness score for each bounding box, Logistic

classifiers for each class, Darknet-53 backbone,

Detection at Multiple Scales

Object Detection, Multi-scale

Detection

YOLOv4 [102] 2020 Weighted-Residual Connections (WRC), Cross-

Stage Partial connections (CSP), DropBlock

Regularization, Mosaic Data Augmentation,

CSPDarknet-53 backbone, Spatial Pyramid Pool-

ing (SPP) and Path Aggregation Network (PAN),

Self-Adversarial Training (SAT)

Object Detection, Basic Object

Tracking

YOLOv5 [107] 2020 AutoLearning of Anchor Boxes, PANet, Training

Enhancements

Object Detection, Basic In-

stance Segmentation (via cus-

tom modifications)

PP-YOLO [109] 2020 Larger Batch Size, EMA, DropBlock regulariza-

tion, IoU Loss, IoU Aware, Grid Sensitive, Ma-

trix NMS, SPP, Distilled ResNet50-vd as a better

Pretrained Model

Object Detection

Scaled-YOLOv4 [116] 2020 Network scaling approach to modify the depth,

width, resolution and the structure of the net-

work.

Object Detection

YOLOR [117] 2021 How to construct a unified network?, Integration

of implicit and explicit knowledge

Object Detection

YOLOS [118] 2021 2D Object detection in a pure sequence-to-

sequence manner

Object Detection

YOLOX [119] 2021 Anchor-free detection, Decoupled head, Label

assignment strategy: SimOTA

Object Detection, Classifica-

tion

YOLOv6 [121] 2022 Self-Distillation Strategy, Reformed the quan-

tization scheme for detection, RepOptimizer,

Channel-wise distillation, Label Assignment us-

ing Task Alignment Learning (TAL)

Object Detection, Instance

Segmentation

YOLOv7 [129] 2022 E-ELAN reparameterization, Extended and

Compound Scaling, Dynamic Label Assignment

Object Detection, In-

stance Segmentation, Pose

Estimation-(via custom modi-

fications)

YOLOv8 [130] 2023 C2f module, Spatial Pyramid Pooling Fusion

(SPPF) layer, Anchor-free detections, Decoupled

head in the prediction stage

Object Detection, Instance

Segmentation, Pose/Keypoints,

Oriented Detection, Classifica-

tion

YOLOv6 3.0 [140] 2023 Bidirectional Concatenation (BiC) Module,

Anchor-Aided Training (AAT) Strategy, New

self-distillation strategy

Object Detection

YOLO-NAS [141] 2023 Neural architecture search to optimize detection

tasks

Object Detection

YOLO-World [142] 2024 Zero-shot detection using text prompts, prompt

then detect

Object Detection

YOLOv9 [134] 2024 Programmable Gradient Information (PGI), Gen-

eralized Efficient Layer Aggregation Network

(GELAN)

Object Detection, Instance

Segmentation

YOLOv10 [136] 2024 NMS-Free Training, Dual label assignments,

Holistic model design, Large-kernel convolutions

and Partial self-attention modules

Object Detection

YOLO11 [137] 2024 Advanced architectural optimizations for real-

time detection

Object Detection, Instance

Segmentation, Pose/Keypoints,

Oriented Detection, Classifica-

tion



Chapter 4

Methodology

Building on the extensive review of the object detection literature outlined in previous chapters, this chapter

delineates a detailed methodology for simulating the Tesla Model 3 within the CARLA simulator environ-

ment. It describes in detail the procedures involved in sensor data collection, the creation of a customized

image dataset for object detection, and the execution of real-time inference using a trained YOLO model.

This exploration provides a thorough examination of assumptions, methodologies, and technical implemen-

tations, offering a complete overview of the approach undertaken. To improve clarity and understanding

of the system’s design and workflow, various Unified Modeling Language (UML) diagrams are integrated

throughout this chapter to visually articulate the complex processes and interactions within the simulation

framework.

4.1 Overview of Methodology

This section systematically outlines the methodology of the project, introducing the five key stages involved

to ensure comprehensive understanding and clarity. The stages are visually represented in Figure 4.1, which

illustrates the sequential steps of the project workflow. The stages include: Stage 1: Simulation Setup, where

the simulation environment for the Tesla Model 3 is configured; Stage 2: Data Acquisition, involving the

collection of sensor data; Stage 3: Dataset Creation, where data is curated into a structured image dataset

for object detection; Stage 4: Model Training, during which the YOLO models are trained and evaluated;

and Stage 5: Real-Time Object Detection, where the best performing trained YOLO model is applied within

the CARLA simulator to detect objects in real-time. This structured breakdown provides a clear roadmap

of the project’s process flow from setup to implementation. Let us now proceed to examine each of these

stages in detail, starting with the simulation setup and culminating in real-time object detection, to gain a

comprehensive understanding of the entire project lifecycle.

29
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Figure 4.1: Five stages involved in this project.

Simulation Setup: This initial phase focuses on establishing a realistic simulation environment that closely

mimics real-world conditions. It involves configuring the CARLA simulation environment to incorporate a

detailed vehicle model—specifically the Tesla Model 3—complete with a comprehensive suite of sensors.

The setup is further refined by simulating dynamic environmental conditions and diverse weather scenarios

to test the robustness of the object detection algorithms under varying operational contexts.

Data Acquisition: The second phase is dedicated to the systematic collection of data necessary for training

and validating the object detection models. This involves deploying a data collection pipeline that utilizes

the sensors configured in the simulation setup to gather synthetic data from the simulated environment. The

data collected spans various scenarios, including different times of day and weather conditions, to ensure a

rich dataset that supports robust model training.

Dataset Creation: Following data acquisition, the raw data is processed to create a structured dataset

suitable for training object detection models. This dataset is initially annotated automatically with an AI-

based labeling process, followed by manual corrections to ensure high accuracy and relevance of the data

labels. This curated dataset is specifically tailored for training object detection models, categorized into

classes such as vehicles, pedestrians, traffic lights, and signs.
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Model Training: The fourth phase involves training multiple object detection models, particularly dif-

ferent configurations and versions of the YOLO model, using the curated dataset. This phase focuses on

optimizing the models to achieve high accuracy and efficiency, with the best-performing model selected

based on the metric mean Average Precision (mAP50-95).

Real-Time Object Detection: The final phase implements the best-performing YOLO model for infer-

ence in a real-time object detection setup within the CARLA environment. This setup tests the model’s

effectiveness in detecting objects or classes in real-time as the vehicle navigates through the simulated en-

vironment. The outcomes are visually documented using the OpenCV library to capture and display the

detection results in action.

4.2 Simulation Setup

The Tesla Model 3 is selected for its compatibility with CARLA’s physics engine. Initialized using CARLA’s

blueprint library, the vehicle is randomly spawned within the Town06 map which can be changed to switch

between a complex urban and rural setting. It operates under autopilot, adhering to traffic rules and dynam-

ically interacting with its environment. CARLA’s Traffic Manager oversees the vehicle’s behavior, control-

ling parameters like target speed (set at 80 km/h), lane changes, and responses to traffic signals. This setup

not only simulates realistic driving behaviors but also integrates dynamic elements such as NPC vehicles and

pedestrians. These entities, managed by CARLA’s Traffic Manager and pedestrian AI, engage with the ego

vehicle in real-time, creating realistic traffic scenarios and enhancing the simulation’s complexity. Environ-

mental variations, like weather changes, are introduced to further test the system’s robustness under diverse

conditions.

4.2.1 Simulation Environment Implementation

Implemented in Python, this section manages data collection and initiates real-time object detection. It in-

teracts with the CarlaWorld to manage simulation parameters and with the YOLOInference to process

detection tasks, orchestrating the simulation workflow effectively. The Component Diagram (Figure 4.2)

illustrates the system’s architecture, divided into three main sections: Client, CARLA Server, and Configu-

rations.

• Client Section: Manages the primary operations including data collection and real-time object detec-

tion.

• CARLA Server Section: Details the components that interact directly with the CARLA simulation

environment, ensuring seamless integration and operation.

• Configurations Section: Houses configuration files that provide essential parameters for accurate

sensor settings and customized operations, thereby ensuring the simulation’s fidelity and adaptability.
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Figure 4.2: Component Diagram of the System

The CARLA simulation environment is set up using the CarlaWorld class, which serves as the central

controller. This class manages the CARLA client, loads maps, and integrates sensors and NPCs into the

simulation. As shown in the Class Diagram (Figure 4.3), CarlaWorld coordinates with SensorBase and

its subclasses (CameraSensor, RadarSensor, UltrasonicSensor) to deploy sensors, which are config-

ured using JSON files and attached to the vehicle.

Figure 4.3: Class Diagram of the CARLA Simulation System

The Sequence Diagram for Sensor Setup (Figure 4.4) outlines the workflow for configuring and at-
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taching sensors. The setup sensors method reads configurations, instantiates sensors, and integrates them

into the CARLA world. Errors during this process are logged to ensure robust execution.

Figure 4.4: Sequence Diagram for Sensor Setup

4.2.2 Sensor Suite Configuration

The Tesla Model 3 in this simulation is equipped with a sophisticated array of sensors, modeled to reflect

a potential real-world autonomous Tesla Model 3 vehicle setup. This suite comprises 21 sensors: 8 RGB

cameras, 1 radar, and 12 ultrasonic sensors, detailed as follows:

• RGB Cameras: Positioned to provide 360-degree coverage, each camera operates at a resolution of

1280x960 pixels and a synchronized frame rate of 30 FPS, ensuring high-quality, consistent imagery.

Specific orientations and fields of view are tailored to distinct operational roles, enhancing environ-

mental awareness and object detection capabilities.

• Radar Sensor: Mounted on the front, this sensor excels in long-range detection with a 35-degree

horizontal field of view and a range of up to 160 meters, contributing to the vehicle’s forward sensing

capabilities.

• Ultrasonic Sensors: These are symmetrically distributed around the vehicle, each with a 5-meter

range and a 60-degree field of view, crucial for short-range obstacle detection during parking and

low-speed maneuvers.
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Configuration files for these sensors (configs/camera config.json, configs/radar config.json,

configs/ultrasonic config.json) outline the parameters and positioning, ensuring reproducibility and

accuracy in simulations.

Note: The configurations and parameters described are based on assumed values to emulate a

realistic autonomous vehicle setup within our simulated environment for testing and develop-

ment purposes.

Below, a comprehensive breakdown of the assumed configurations for each type of sensor is provided,

ensuring reproducibility and a clear understanding of their functional role in the simulation:

Camera Suite

The 8 RGB cameras are strategically configured to provide 360-degree coverage:

• Front Narrow Camera: Positioned at [2.0, 0.0, 1.5], FOV: 35°, oriented directly forward. Captures

high-detail images for long-range detection.

• Front Wide Camera: Positioned at [2.0, 0.2, 1.5], FOV: 50°. Provides broader coverage of the road

ahead.

• Front Fisheye Camera: Positioned at [2.0, -0.2, 1.5], FOV: 120°. Captures peripheral data for lateral

object detection.

• Side Cameras (Left and Right): Positioned at [1.5, -0.9, 1.2] (left) and [1.5, 0.9, 1.2] (right) with a

-45° and 45° yaw, respectively. FOV: 100°. Monitors side lanes for overtaking or merging vehicles.

• Rear Cameras (Left and Right): Positioned at [-1.5, -0.9, 1.2] (left) and [-1.5, 0.9, 1.2] (right) with

175° and -175° yaw, respectively. FOV: 100°. Covers blind spots in the rear-side areas.

• Rear Fisheye Camera: Positioned at [-2.0, 0.0, 1.5], FOV: 150°, oriented backward. Provides a

panoramic view of the rear environment.

Radar Sensor

A front-facing radar sensor is configured with:

• Horizontal FOV: 35°, Vertical FOV: 5°

• Range: 160 meters, Points Per Second: 1500

• Position: [1.0, 0.0, 0.2], Rotation: [0°, 0°, 0°]

• Role: Detects long-range objects, providing velocity and depth measurements for collision avoidance.
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Ultrasonic Sensors

Twelve ultrasonic sensors are distributed evenly around the vehicle, with:

• Range: 5 meters, Horizontal FOV: 60°, Vertical FOV: 5°

• Six Front Sensors: Positioned symmetrically across the front to detect objects in the vehicle’s imme-

diate path.

• Six Rear Sensors: Distributed along the rear to assist in reversing and close-proximity obstacle de-

tection.

4.2.3 Weather and Lighting Conditions

Weather and lighting variations introduce realism into the simulation. The defined conditions include:

• Morning: Cloudiness: 20%, Precipitation: 90%, Sun Altitude: 30°—emulates a rainy, low-light

morning.

• Midday: Cloudiness: 30%, Precipitation: 0%, Sun Altitude: 80°—bright, clear conditions for maxi-

mum visibility.

• Afternoon: Cloudiness: 50%, Precipitation: 0%, Sun Altitude: -40°—diffused lighting for overcast

conditions.

• Almost Night: Cloudiness: 30%, Precipitation: 30%, Sun Altitude: -60°—dim lighting to simulate

dusk.

These conditions test the robustness of object detection under varying levels of visibility and environ-

mental noise [5].

4.3 Data Acquisition

The data acquisition phase is essential for collecting the synthetic data needed to train and validate object

detection models. This process, managed by the CarlaSyncMode class, ensures that all sensors operate in

sync with the simulation timeline, covering various scenarios such as different times of day and weather con-

ditions to compile a diverse and robust dataset. Data acquisition begins with loading sensor configurations

from JSON files and adjusting the simulation environment’s weather conditions for realism. Non-player

characters (NPCs) are introduced to enrich the scenarios. The process continuously loops as long as the ac-

quisition status is active. Each iteration advances the CARLA world, collects data, and processes it through

the SensorDataProcessor class.
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Figure 4.5: Activity Diagram for Data Acquisition

To detail the operational flow, the Sequence Diagram for Sensor Data Acquisition (Figure 4.6) shows

the activation of CarlaSyncMode by the begin data acquisition function, maintaining synchronization

throughout the data collection process. Data collection commands are dispatched to the sensors mounted on

the Tesla Model 3. Collected data is then buffered in a queue, and depending on the sensor type, directed to
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specific processing functions: process camera data() for camera sensors, process radar data() for

radar sensors, and process ultrasonic data() for ultrasonic sensors. Once processed, the data is saved

to disk. The procedure concludes with a comprehensive cleanup of all sensors, preparing the system for the

next data acquisition cycle.

Figure 4.6: Sequence Diagram for Sensor Data Acquisition

4.3.1 Data Collection Pipeline

The data collection pipeline is an integral part of the simulation framework, designed to generate synthetic

datasets that are temporally and spatially aligned. This pipeline integrates seamlessly with the CARLA

simulator to facilitate synchronized data acquisition, metadata logging, and structured data storage, crucial

for training and evaluating object detection models in autonomous driving contexts. The pipeline captures

data from a simulated Tesla Model 3 equipped with an array of sensors, including RGB cameras, radar,

and ultrasonic sensors. These sensors are strategically positioned to provide comprehensive 360-degree

environmental coverage. The data from all sensors is synchronized to ensure alignment with the same

simulation frame, set at a frame rate of 20 FPS for optimal balance between temporal resolution and com-

putational demand. This synchronization is managed by the CarlaSyncMode class and configured in the

set synchronous mode.py file.

Functionalities of the Data Collection Pipeline: The data collection pipeline provides several key func-

tionalities:
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• Synchronous Data Acquisition: The pipeline uses the CarlaSyncMode class to enable CARLA’s

synchronous mode, ensuring that the simulation advances in fixed time steps and all sensors capture

data corresponding to the same simulation frame. The delta seconds parameter is set to achieve a

frame rate of 20 FPS during data collection, ensuring adequate temporal resolution for most machine

learning applications.

• Sensor Data Processing: Raw data from sensors is processed in real-time using the SensorDataPro-

cessor class. The pipeline handles data from:

– Cameras: Captures RGB images, which are converted and stored in .png format.

– Radar: Logs object measurements such as velocity, altitude, azimuth, and depth in .csv format.

– Ultrasonic Sensors: Records short-range obstacle detections in .csv format.

• Data Storage and Organization: The pipeline organizes the data into a hierarchical directory struc-

ture, categorizing it by sensor type and sensor role (e.g., camera front wide, radar front). Meta-

data associated with each sensor reading, such as timestamp, location, and orientation, is logged in

accompanying CSV files. This facilitates easy retrieval and analysis of data.

• Dynamic Environment Simulation: NPC vehicles and pedestrians are dynamically introduced into

the simulation using the NPCClass. Their behaviors and positions are randomized to create diverse

scenarios.

• Scalability and Automation: The pipeline is designed to handle large-scale data collection tasks,

automating the entire process from simulation initialization to data storage.

Synthetic Data Collection: The pipeline collects synthetic data by running the simulation with the Tesla

Model 3 equipped with the following sensors:

• RGB Cameras: Eight cameras placed around the vehicle provide 360-degree coverage. Images are

captured at 20 FPS and stored as .png files, with corresponding metadata logged in CSV files.

• Radar: A single front-facing radar captures object measurements at 20 FPS. Data points include

attributes such as velocity and depth, which are stored in a structured CSV file.

• Ultrasonic Sensors: Twelve sensors around the vehicle detect short-range obstacles. Measurements

are captured at 20 FPS and logged in CSV files.

The data collection process begins after an initial stabilization phase, where frames are skipped to ensure

that all sensors are properly initialized and synchronized. For each simulation step, the pipeline captures and

processes sensor data, which is then saved to disk in real-time.
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Raw Data Storage: The collected data is stored in a hierarchical directory structure for efficient manage-

ment and retrieval. The directory is organized as follows:

data/

camera_front_wide/

images/

00001.png

00002.png

camera_data.csv

radar_front/

radar_data.csv

ultrasonic_left/

ultrasonic_data.csv

Each directory contains:

• Raw Data: Sensor outputs such as images or measurements.

• Metadata: Associated information such as frame ID, timestamp, sensor position, and orientation.

Advantages of the Pipeline:

• Temporal and Spatial Consistency: Synchronous mode ensures all sensor data aligns perfectly in

time, which is critical for sensor fusion tasks.

• Diverse Dataset Generation: Randomized NPC behavior and weather variations create a rich and

varied dataset suitable for training robust object detection models.

• Scalable and Modular Design: The pipeline can easily be extended to include additional sensors or

modified for different simulation scenarios.

4.4 Dataset Creation

Following data acquisition, raw camera data from the CARLA simulator is processed into a structured dataset

optimized for training object detection models. Initially, an AI-based labeling system automatically anno-

tates the data, which is then manually refined to ensure the precision and relevance of the labels. This

dual-stage annotation readies the dataset for categorizing images into classes: vehicles, pedestrians, traffic

lights, and signs.



4.4. Dataset Creation 40

Figure 4.7: Example of reorganised images with new filename convention.

4.4.1 Data Reorganisation

Image data captured from eight cameras on a simulated Tesla Model 3 undergo a comprehensive reorganiza-

tion process. Initially stored across various subdirectories according to camera position and type, images are

consolidated into a unified directory structure under a new naming convention. This convention embeds es-

sential metadata within each filename, such as sequence number, town, simulation segment, time of day, and

camera type, for example, 0001 town 01 part 00 night front fisheye.png. This approach not only

simplifies data management but also significantly enhances the dataset’s utility for object detection model

training. A total of 6400 images have been systematically processed and organized, making the dataset

robust and ready for detailed annotation. Figure 4.7 illustrates nine random images arranged in a 3 x 3

grid, showcasing the updated filenames according to the new naming convention. This visual representation

highlights the systematic and structured nature of the dataset post-reorganization.
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4.4.2 Labeling Process

Following the reorganization of the image data, the dataset undergoes a two-stage labeling process crucial

for training YOLO models for object detection. This process combines automated and manual techniques

to ensure high accuracy and relevance of the data labels for four designated classes: vehicles, pedestrians,

traffic lights, and signs.

Figure 4.8: Two-Stage Dataset Labeling Process. This figure details each step in the dataset labeling workflow. In the first stage, it

shows the preparation of unlabeled input data, definition of class ontologies, configuration of the GroundedSAM model according to

these ontologies, and the automated generation of preliminary labels through advanced object detection and segmentation. The second

stage illustrates the manual review and refinement process using the Roboflow framework, where labels generated by GroundedSAM

are meticulously adjusted to ensure they conform to the precise bounding box format necessary for model specific training for example

YOLOv9 format required for training YOLOv9 models for 2D object detection task.

As depicted in Figure 4.8, the labeling process begins with automated label generation followed by

manual review. Below is a detailed explanation of each step in the dataset labeling process:

• Define Ontology: The first step involves defining the ontology or categories of objects to label.

GroundedSAM utilizes these textual descriptions to guide its detection process. It is essential to

specify the types of objects (e.g., vehicles, pedestrians, traffic lights) and their attributes (e.g., color,

action) to ensure comprehensive detection [151].

• Automated Label Generation: GroundedSAM automates the labeling of the 6400 images. This

model integrates advanced detection and segmentation capabilities to handle diverse visual scenes.

It processes the unlabeled images from a unified directory, generating initial annotations that detail
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object boundaries and class identifications. These preliminary labels are stored in an intermediate

format for further refinement.

• Manual Review and Refinement: Following the automated annotation process, each label is metic-

ulously reviewed manually to ensure precision and improve the delineation of object boundaries. This

review phase leverages the capabilities of the Roboflow framework to visualize the segmented con-

tours generated by GroundedSAM, as illustrated in Figure 4.9 and Figure 4.10. Subsequent adjust-

ments align the annotations with the specific format requirements of YOLOv9, highlighted in Fig-

ure 4.13, with a particular focus on the accuracy of bounding boxes:

– Conversion to Bounding Boxes: The annotations are transformed from segmented contours

into bounding boxes. Each object is encapsulated by coordinates, formatted as class id,

center x, center y, width, and height, to accurately represent their spatial presence.

• Output Preparation: The refined annotations are formatted to YOLOv9 specifications and the dataset

is segmented into training, validation, and test sets. This structured dataset is then ready for integration

into the training pipeline and is compatible with all YOLO models trained in this project.

Figure 4.9 shows the visualization of the automatically generated labels from the GroundedSAM model,

providing an initial assessment of object segmentation.
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Figure 4.9: Visualization of automatically generated labels using supervision library [152].

Figures 4.10 to 4.13 illustrate the manual review and refinement process. Initially, the generated labels,

as shown in Figure 4.10, undergo adjustments using the “Convert to Box” functionality of the Roboflow

framework, depicted in Figure 4.11. These modifications ensure the labels conform to the specific format

required by YOLOv9, as detailed in Figures 4.11 and 4.13.
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Figure 4.10: Visualization of Generated Labels using Roboflow.

Figure 4.11: Conversion of Generated Labels using Roboflow functionality.
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Figure 4.12: Converted Bounding Box using Roboflow.

Figure 4.13: Annotated image in Review and Refinement phase using Roboflow framework.

4.5 Model Training

The fourth phase involves training multiple configurations and versions of the YOLO model series on the

curated dataset to optimize accuracy and efficiency. The performance of the models is evaluated based on

two mean Average Precision (mAP) based metrics, with the best-performing model selected based on both

high localization precision and classification accuracy.

Figure 4.14 illustrates the methodology used for training the YOLO models. The custom dataset, com-

prising four classes, is processed using a distributed sampler and fed into the modified YOLO models. The
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model architecture includes a frozen pretrained backbone and a reconfigured output layer to accommodate

four classes, aligning with the dataset. The output consists of five key components: bounding boxes, seg-

mentation masks, keypoints pose, class probabilities, and oriented boxes [137]. While these outputs can

address diverse tasks such as object detection, instance segmentation, pose estimation, and oriented object

detection, this project focuses exclusively on 2D object detection. For this purpose, bounding boxes provide

spatial localization of objects, while class probabilities assign specific labels, enabling simultaneous object

localization and classification.

Figure 4.14: Model training using the Ultralytics framework with a focus on YOLO11 model.

The training process was conducted using the Ultralytics framework on a custom dataset split into 70%

training (4,485 images), 20% validation (1,274 images), and 10% testing (641 images). The models, ranging

from YOLOv8n to YOLO11m, utilized pretrained weights specific to each version, such as “yolo11m.pt,”

pretrained on the COCO dataset [153] with 80 classes. The output layer was modified to match the four-class

custom dataset, and fine-tuning was performed over 100 epochs. Training employed 4 NVIDIA GPUs (48

GB each) with a distributed setup handled by Distributed Data Parallel (DDP) [154] and a total batch size

of 128 (32 per GPU). The Ultralytics framework [155] automatically managed hyperparameters, including

optimizer settings and learning rate scheduling, ensuring optimal configurations. Automatic Mixed Precision

(AMP) [156] was utilized to enhance computational efficiency.
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4.6 Real-Time Object Detection

Figure 4.15: Sequence Diagram for YOLO Inference

The final phase involves deploying the best-performing YOLO model for real-time object detection within

the CARLA simulation environment. The workflow for inference is depicted in the Sequence Diagram

for YOLO Inference (Figure 4.15) and the Activity Diagram for YOLO Object Detection Inference

(Figure 4.16). The system captures synchronized image data from eight RGB cameras mounted on the Tesla

Model 3, with images initially recorded at a resolution of 1280x960 pixels. These images are resized to a res-

olution of 640x640 pixels to match the YOLO model’s input requirements. Using the YOLOInference class,

the pre-trained YOLO model processes the images in real time, detecting objects and outputting bounding

boxes, class labels, and confidence scores.

The results are visualized by overlaying bounding boxes and labels on the images, which are then orga-

nized into a 2x4 grid layout for a comprehensive view of the vehicle’s surroundings. The processed frames

are recorded as an MP4 video using OpenCV’s [157] VideoWriter, allowing for post-analysis and perfor-

mance evaluation. The system operates at a frame rate of 30 FPS, leveraging the CarlaSyncMode class to

synchronize sensor data with simulation frames and maintain temporal consistency during inference.
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Figure 4.16: Activity Diagram for YOLO Object Detection Inference



Chapter 5

Experimental Setup and Evaluation Metrics

This chapter provides a comprehensive overview of the technical framework and resources required to repli-

cate the experiments conducted in this project. It meticulously details the software libraries, packages,

operating systems, and computational resources that are essential across different phases of the project,

which include simulation setup, dataset creation, exploratory data analysis, and model training. The chapter

is organized to facilitate easy understanding of the technical setup and execution steps. It concludes with a

discussion of the various evaluation metrics used to analyze the experimental results, ensuring a clear path

for both replication and assessment of the findings.

5.1 Overview

The project’s workflow is methodologically divided into five stages: setting up the simulation environment,

data acquisition, dataset creation, model training, and real-time object detection. This chapter further cate-

gorizes the implementation into three parts for clarity: the simulation part (comprising the simulation setup,

data collection, and real-time inference), the dataset creation phase (involving data reorganization and label-

ing), and the Exploratory Data Analysis (EDA) and model training phase.

5.2 Simulation Environment Configuration

The simulation tasks, including data collection and real-time inference, were executed using CARLA version

0.9.13 on an Ubuntu 20.04.6 LTS system. The hardware setup included a single NVIDIA GPU with 8 GB

of memory, sufficient for running simulations and YOLO model inferences. Python 3.10 was chosen for its

extensive support for deep learning libraries. Key software components used were:

• OpenCV [157] (v4.9.0) for video processing and visualization.

• NumPy (v1.26.2) for numerical operations.

• Pandas (v2.1.4) for data handling.

49
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• Matplotlib (v3.10.0) for visualization.

• PyTorch [158] (v2.2.0) and Torchvision (v0.17.0) for deep learning, with CUDA acceleration (v11.8).

• Ultralytics [155] (v8.3.55) for YOLO model operations.

Note: Version compatibility testing is recommended if alternative package versions are used.

5.3 Dataset Organization and Labeling

The dataset was reorganized using Python 3.10, with automated labeling performed on a Google Colab

NVIDIA L4 GPU instance. The labeling process utilized the Autodistill package [150] and Roboflow

framework [159] to automate the annotation of image data, which was then refined manually in Roboflow

framework. Key steps included:

1. Mounting Google Drive to access and unzip organised dataset images.

2. Utilizing the Supervision library to verify image loading.

3. Applying GroundedSAM using autodistill grounded sam for initial automated labeling, followed by

manual refinement in Roboflow.

This process ensured accurate labels for the training dataset, critical for the subsequent EDA and model

training phase.

5.4 EDA and Model Training Environment

A dedicated Python 3.9.19 Conda environment, named yolov env, was created to isolate dependencies and

facilitate reproducible research. This environment contained libraries essential for EDA and model training,

including:

• torch-2.4.1 with cuda-12.1, ultralytics-8.3.13 for model operations.

• pandas, matplotlib, seaborn for data visualization.

• PyYAML, opencv-python, numpy, scipy, torchvision, roboflow, requests, urllib3 for data

handling and network operations.

5.5 Computational Resources

The model training and EDA were performed on a high-performance computing server equipped with:

• Two Intel Xeon Gold 5218R CPUs (80 logical cores) and 503 GB of RAM.
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• Four NVIDIA RTX A6000 GPUs, each with 48 GB of memory.

This configuration enabled efficient parallel processing and distributed model training, significantly reducing

computational time and ensuring robust performance metrics.

5.6 Evaluation Metrics

This section outlines the evaluation metrics utilized in assessing the performance of the object detection

task. Among the commonly used metrics, Average Precision (AP) and Mean Average Precision (mAP) are

the standard for measuring the accuracy of object detection models [160, 161]. In addition to AP, metrics

such as Precision, Recall, and F1 Score are employed to provide a comprehensive evaluation of model

performance [162]. These metrics rely on the classification of detections into the following categories:

• True Positives (TP): Predictions where the detected bounding box sufficiently overlaps with a ground-

truth bounding box (based on an Intersection over Union (IoU) threshold) and both belong to the same

class [161].

• False Positives (FP): Predictions where the detected bounding box does not overlap sufficiently with

any ground-truth bounding box, or it overlaps but is assigned to the wrong class [161].

• False Negatives (FN): Ground-truth objects that were not detected by the model, either due to missing

bounding boxes or incorrect classifications [161].

• True Negatives (TN): Predictions where the absence of an object is correctly identified. However,

TNs are typically not relevant in object detection, as the focus is on detecting objects [160, 161].

The classification of detections into these categories is based on the concept of Intersection over Union

(IoU), which quantifies the overlap between the predicted and ground-truth bounding boxes. IoU serves as

the foundation for determining whether a detection is correct or incorrect. By comparing the IoU value to a

predefined threshold, detections are classified as follows:

• If the IoU value is greater than or equal to the threshold, the detection is considered correct.

• If the IoU value is below the threshold, the detection is classified as incorrect.

These metrics, in combination with IoU-based classification, form the basis for evaluating object detec-

tion models, providing insights into their accuracy, robustness, and generalization capabilities [160].

Intersection over Union (IoU): The Intersection over Union (IoU) is a widely used metric for evaluating

object detection models. IoU measures the overlap between the predicted or detected bounding box and the

ground-truth bounding box, relative to their union. Object detectors not only identify bounding boxes but

also classify each one. Therefore, only ground-truth and detected boxes that belong to the same class can be
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compared using the Intersection over Union (IOU) metric. This metric is critical for assessing the accuracy

of the spatial localization of detected objects. Mathematically, the IoU is defined as:

IoU =
Area of Overlap

Area of Union
=

area(Bgt ∩Bd)

area(Bgt ∪Bd)
, (5.1)

where Bd represents the detected or predicted bounding box and Bgt denotes the ground-truth bounding

box [160]. The numerator calculates the area of overlap between the two bounding boxes, while the denom-

inator computes the total area covered by both boxes combined. A perfect match between the predicted and

ground-truth bounding boxes corresponds to IoU = 1, indicating complete overlap. Conversely, if the boxes

do not intersect, IoU = 0. Typically, an IoU threshold is set to determine whether a detection is considered

a true positive. For example, a threshold of 0.5 means that the predicted bounding box must overlap at least

50% of the ground-truth bounding box to be classified as correct [161]. Figure 5.1 illustrates the calculation

Figure 5.1: Illustration of Intersection over Union (IoU). The overlap between the predicted or detected bounding box (orange) and the

ground-truth bounding box (green) is divided by their union to compute the IoU. This figure illustrates three scenarios based on the

Intersection over Union (IoU) scores. An IoU score close to zero - case (a), signifies poor detection accuracy. A score around 0.5 or

slightly higher - case (b), is indicative of good detection. An IoU score near one, such as 0.95 - case (c), denotes excellent detection

performance by the object detector.

of IoU, where the orange and green rectangles represent the predicted and ground-truth bounding boxes,

respectively. IoU is based on the Jaccard Index, a coefficient of similarity for two sets of data [163]. This

metric plays a pivotal role in object detection by providing a quantitative measure of the agreement between

predicted and actual object locations. As stated in Padilla et al. [161], IoU thresholds can be adjusted to

make the evaluation more or less strict, with thresholds closer to 1 requiring highly precise predictions. In

this project, IoU serves as the foundation for multiple evaluation metrics, such as precision, recall, and mean

average precision, which are discussed in subsequent subsections.
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5.6.1 Precision, Recall, and F1 Score

Precision, Recall, and F1 Score are fundamental metrics for evaluating machine learning models. These

metrics provide insights into models ability to correctly identify or classify objects and minimize errors.

These metrics are used particularly in contexts where data may be imbalanced or where the cost of false

positives and false negatives is significant [164].

Precision: Precision measures the proportion of correctly predicted objects (true positives) out of all pre-

dicted positive objects (true positives and false positives). It quantifies the model’s ability to avoid false

positives.

Mathematically, Precision is defined as:

Precision (Pr) =
True Positives (TP)

True Positives (TP)+False Positives (FP)
. (5.2)

A high precision value indicates that the model produces fewer false positives, focusing on the relevance

of its predictions [165, 164, 161]. However, precision alone does not account for missed detections (false

negatives), which motivates the need for recall.

Recall: Recall measures the proportion of correctly predicted objects (true positives) out of all actual

objects in the ground truth (true positives and false negatives). It reflects the model’s ability to detect all

relevant instances.

Mathematically, Recall is defined as:

Recall (Rc) =
True Positives (TP)

True Positives (TP)+False Negatives (FN)
. (5.3)

A high recall value indicates that the model successfully detects most of the ground-truth objects, mini-

mizing missed detections. However, it does not penalize false positives, which is why it is often considered

alongside precision [165, 164, 161].

F1 Score: The F1 Score combines Precision and Recall into a single metric by calculating their harmonic

mean. It provides a balanced measure of a model’s accuracy, particularly in scenarios where precision and

recall exhibit a trade-off.

Mathematically, the F1 Score is defined as:

F1 Score = 2 ·
Precision ·Recall

Precision+Recall
. (5.4)

The F1 Score ranges from 0 to 1, with higher values indicating better performance. It is especially

useful in imbalanced datasets, where a model might achieve high precision or recall independently but fail
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to balance both effectively [165, 164].

5.6.2 Metric Curves

Metric curves are pivotal for evaluating YOLO’s performance across varying thresholds 1. The Precision-

Confidence Curve and Recall-Confidence Curve depict how precision and recall, respectively, change as

confidence thresholds are adjusted, offering insights into the trade-offs between false positives and false neg-

atives. The F1-Confidence Curve illustrates the threshold where precision and recall are optimally balanced,

marking the point of peak overall performance. The Precision-Recall Curve provides a comprehensive view

of the interplay between precision and recall, particularly valuable for understanding performance in imbal-

anced datasets. Complementing these curves, the Confusion Matrix and its Normalized version detail true

positives, false positives, true negatives, and false negatives, allowing class-specific performance analysis

and comparison across datasets [160, 155, 162].

5.6.3 Mean Average Precision (mAP)

Average Precision (AP)

Average Precision (AP) is a key evaluation metric in object detection that quantifies the trade-off between

precision and recall across varying confidence thresholds. It is computed as the area under the Precision-

Recall (P-R) curve and provides a single scalar value summarizing a model’s performance in detecting

objects accurately. This metric accounts for both the accuracy of detections (precision) and the model’s

ability to find all objects (recall) [162].

Precision and Recall Formulation: In object detection, the output consists of bounding boxes, class

labels, and confidence scores. These confidence scores are compared against a threshold τ to classify de-

tections as positive or negative. Predictions with confidence scores greater than or equal to τ are considered

positive detections, while those below τ are negative.

Assume a dataset with G ground-truth objects, N detections, and S correct detections (S ≤ G). Let n

represent the index of detections, k denote confidence thresholds in decreasing order, and τ(k) represent the

k-th confidence threshold [161]. Precision and recall are formally defined as:

Precision (Pr)(τ) =
∑

S
n=1 T Pn(τ)

∑
S
n=1 T Pn(τ)+∑

N−S
n=1 FPn(τ)

(5.5)

Recall (Rc)(τ) =
∑

S
n=1 T Pn(τ)

∑
S
n=1 T Pn(τ)+∑

G−S
n=1 FNn(τ)

(5.6)

Here:

1For more details on YOLO performance metrics, refer to the discussion at https://github.com/ultralytics/ultralytics/

issues/7307.

https://github.com/ultralytics/ultralytics/issues/7307
https://github.com/ultralytics/ultralytics/issues/7307
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• T Pn(τ): True positives for detection n at threshold τ .

• FPn(τ): False positives for detection n at threshold τ .

• FNn(τ): False negatives for detection n at threshold τ .

Precision measures the proportion of correct detections among all predicted positives, while recall mea-

sures the proportion of detected ground-truth objects [161].

Precision-Recall Curve and Challenges: The Precision-Recall curve is constructed by plotting precision

against recall for varying confidence thresholds τ(k). Ideally, a good object detector maintains high precision

as recall increases, resulting in a large area under the curve (AUC). However, in practice, the P-R curve is

often non-monotonic, exhibiting a zigzag pattern due to fluctuations in precision at different thresholds. This

non-monotonic behavior complicates accurate AUC computation.

Interpolated Precision for Monotonicity: To address the non-monotonic behavior, precision is interpo-

lated to ensure monotonicity. The interpolated precision Printerp(R) at recall R is defined as:

Printerp(R) = max
k|Rc(τ(k))≥R

{Pr(τ(k))}, (5.7)

where:

• τ(k): Confidence threshold for the k-th detection, ordered such that τ(k)> τ(k+1).

• Rc(τ(k)): Recall value corresponding to threshold τ(k), calculated using Equation 5.6.

This ensures that the resulting precision-recall curve is monotonic, enabling accurate area computa-

tion [161].

Computation of Average Precision: AP is computed as the area under the interpolated precision-recall

curve, sampled at discrete recall values Rr(k) [161]. Using a Riemann sum, AP is defined as:

AP =
K

∑
k=0

(

Rr(k)−Rr(k+1)
)

Printerp(Rr(k)), (5.8)

where:

• Rr(k): Reference recall value at the k-th position.

• Printerp(Rr(k)): Interpolated precision at Rr(k).



5.6. Evaluation Metrics 56

Interpolation Methods: There are two common approaches for computing AP:

• N-Point Interpolation: The reference recall values Rr(k) are equally spaced in the interval [0,1]. For

example, the COCO challenge uses N = 101 points [166].

• All-Point Interpolation: All recall values corresponding to unique confidence thresholds are used.

This method, adopted by the Pascal VOC challenge [167], ensures maximum precision.

Mean Average Precision (mAP)

Mean Average Precision (mAP) extends AP by computing the average of AP values across multiple object

classes. It is particularly useful for datasets with multiple object categories, as it provides an aggregated

measure of the model’s performance [160].

Mathematically, mAP is expressed as:

mAP =
1

C

C

∑
i=1

APi, (5.9)

where C is the total number of classes, and APi is the Average Precision for the i-th class [160, 161].

mAP Across IoU Thresholds: The mAP metric is often computed across a range of IoU thresholds to

provide a more comprehensive evaluation. For example:

• mAP@[0.5]: This metric averages AP values computed at 0.5 IoU threshold value.

• mAP@[0.5:0.95]: This metric averages AP values computed at IoU thresholds ranging from 0.5 to

0.95, with a step size of 0.05 [161].

Fitness score: In YOLOv5, the default fitness function/score is defined as a weighted combination of

mAP50 and mAP50-95 metrics. The fitness score in YOLO models is a single value that represents the

overall performance of the model, combining multiple evaluation metrics. It is used to assess and compare

different model iterations during training and optimization [107].

Mathematically,

Fitness Score = 0.1∗ (mAP50)+0.9∗ (mAP50−95) (5.10)

where, 0.1 and 0.9 are weights specific to each metric used in equation 5.10 respectively 2.

2https://github.com/ultralytics/yolov5/issues/2303

https://github.com/ultralytics/yolov5/issues/2303


Chapter 6

Results and Evaluation

In Chapters 4 and 5, the methodologies and experimental setup for this research project were outlined. This

chapter builds on that foundation by presenting the empirical results and corresponding analyses. It begins

with a detailed Exploratory Data Analysis (EDA) of the dataset, offering insights into its structure, class

distributions, and challenges relevant to the object detection task. Following this, the evaluation metrics and

hyperparameter configurations employed in the experiments are discussed. The chapter concludes with a

comprehensive review of the experimental results, incorporating both quantitative metrics and qualitative

visualizations to assess the model’s performance and identify areas for potential improvement.

6.1 Data Acquisition and Preparation

The data was generated using a simulated Tesla Model 3 equipped with a comprehensive sensor suite com-

prising 8 cameras, 12 ultrasonic sensors, and 1 radar. The data collection process was conducted in the

CARLA simulator across six different maps (Town01 to Town06), each capturing a diverse range of sce-

narios. The dataset includes environmental variations such as different times of day (morning, midday, and

night) and varying numbers of non-player characters (NPCs) like vehicles and pedestrians.

Table 6.1 summarizes the details of the data collection process, including the number of frames captured

per camera, the environment’s conditions, and the total number of images collected. The total data comprises

6,400 images captured over 9 simulation runs. Simulations collecting 50 frames per camera required an

average of 10 minutes per run, while those capturing 100 frames per camera took approximately 23 minutes

per run. The metadata for the captured data, including sensor IDs and configurations, is stored in CSV

files. Figures 6.1, 6.2, and 6.3 illustrate examples of metadata for camera, radar, and ultrasonic sensors,

respectively.

57
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Map Time of Day NPCs (Vehicles, Walkers) Frames/Camera Total Cameras Total Images

Town01 Night 29, 34 100 8 800

Town01 Morning 43, 32 100 8 800

Town02 Morning 40, 43 50 8 400

Town02 Midday 31, 42 50 8 400

Town03 Night 28, 34 100 8 800

Town04 Night 31, 32 100 8 800

Town05 Night 37, 32 100 8 800

Town05 Morning 40, 43 100 8 800

Town06 Midday 40, 55 100 8 800

Table 6.1: Summary of data collection in the CARLA simulator across different maps, environmental conditions, and NPC configura-

tions.

Figure 6.1: Visualization of the camera metadata file, which organizes camera data for further processing steps.

6.2 Exploratory Data Analysis (EDA)

This section presents the exploratory data analysis conducted on the custom dataset curated for training the

YOLO models. The dataset is split into three subsets: Train-(70%), Validation-(20%), and Test-(10%). Each

subset contains images labeled with four primary classes: Vehicles, Traffic Lights, Pedestrians, and Traffic

Signs. The analysis highlights label distributions, null image percentages, and class co-occurrence patterns

across these splits.

6.2.1 Dataset Overview

Table 6.2 summarizes the distribution of images and labels across the dataset splits.

Split Total Images Unlabeled Images Vehicle Traffic Light Pedestrian Traffic Signs

Train 4,485 430 (9.58%) 10,031 13,071 2,227 1,459

Validation 1,274 124 (9.73%) 2,820 3,523 600 434

Test 641 53 (8.26%) 1,377 1,762 332 230

Table 6.2: Distribution of images and labels across Train, Validation, and Test dataset splits.
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Figure 6.2: Visualization of the radar metadata file, which organizes radar data for further processing steps.

6.2.2 Dataset Label Analysis

This subsection presents a detailed analysis of the training dataset using two visualizations: the class dis-

tribution and label distribution heatmaps (Figure 6.4) and the label correlogram (Figure 6.5). These visual-

izations provide insights into the distribution and relationships of object annotations across different classes

and attributes.

The class distribution bar chart in the top left of Figure 6.4 highlights a significant imbalance across the

four object classes. The traffic light class has the highest prevalence, with over 12,000 instances-(precisely

13,071 instances, refer Table 6.2), followed by the vehicle class. In contrast, the Pedestrian and Traffic Signs

classes are underrepresented, which may lead to biased predictions favoring the dominant classes. The object

center heatmap, shown in the top right of Figure 6.4, indicates that object centers are primarily concentrated

near the center of the images, with normalized coordinates clustered around (0.5,0.5). The 2D histogram of

object center coordinates in the bottom left of Figure 6.4 reinforces this pattern, highlighting a central bias in

the spatial distribution of objects. Finally, the scatter plot of width versus height, located in the bottom right

of Figure 6.4, shows that the majority of objects have small bounding boxes, with normalized dimensions

predominantly below 0.2, while larger objects are less frequent.

The label correlogram in Figure 6.5 provides a detailed overview of the pairwise relationships between

label attributes (x, y, width, and height) and their individual distributions. The diagonal histograms in Fig-

ure 6.5 illustrate the distribution of individual attributes, with x and y showing a relatively uniform spread

across the image but with slight peaks near the center. The histograms for width and height are heavily

skewed toward smaller values, indicating the dominance of small objects in the dataset. The scatter plots

below the diagonal show the pairwise relationships. The x versus y scatter plot confirms the central cluster-
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Figure 6.3: Visualization of the ultrasonic sensor metadata file, which organizes ultrasonic data for further processing steps.

ing of object centers, while the width versus height scatter plot reveals a triangular relationship, with smaller

dimensions dominating the dataset.

These observations highlight key characteristics of the dataset. The imbalance in class frequencies sug-

gests the need for strategies such as data augmentation, oversampling, or class weighting to mitigate poten-

tial biases in model training. The central clustering of object centers, as observed in the heatmap and scatter

plots, may limit the ability of the model to generalize to edge-located objects, indicating the importance of

diversifying object placement during dataset preparation. The prevalence of small bounding boxes suggests

that anchor box configurations and data augmentation techniques should prioritize the detection of objects

across a range of scales.

6.2.3 Label Distribution and Null Images

The dataset exhibits significant class imbalance as discussed in previous subsection, with Traffic Light being

the most frequent class and Traffic Signs the least frequent across all splits. Additionally, a proportion of

images in each split are unlabeled, as summarized in Table 6.2. These null images aim to simulate real-world

conditions where some images may not contain any detectable objects, enhancing the model’s generalization.

Figures 6.6a, 6.6c, 6.6e illustrates the label distributions across all images in all splits of the dataset, while

figures 6.6b, 6.6d, 6.6f, 6.7d shows the count and percentage of unlabeled images across splits of the

dataset.



6.2. Exploratory Data Analysis (EDA) 61

Figure 6.4: Class distribution, object center heatmap, and object scale distributions for the training dataset.

6.2.4 Class Co-occurrence Analysis

The Class Co-occurrence Matrix provides insights into how frequently different classes appear together

within the same images. Each matrix cell (i, j) represents the number of images containing both class i

and class j, while the diagonal elements represent the frequency of each class appearing individually [168].

Figures 6.7a, 6.7b, and 6.7c display the co-occurrence matrices for the Train, Validation, and Test splits,

respectively.

Key insights from the co-occurrence analysis:

• High Co-occurrence: Vehicles and Traffic Lights exhibit the highest co-occurrence across all splits,

reflecting realistic traffic environments.

• Moderate Co-occurrence: Pedestrians often co-occur with Vehicles and Traffic Lights, particularly

in urban crosswalk settings.

• Low Co-occurrence: Traffic Signs have the least co-occurrence with Pedestrians, indicating fewer

pedestrian-centric scenes containing road signage.
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Figure 6.5: Label correlogram showing pairwise relationships and distributions of label attributes.

6.2.5 Insights and Implications

• Class Imbalance: The dataset is imbalanced, with Traffic Lights overrepresented and Traffic Signs

underrepresented. This imbalance may lead to biased predictions and requires mitigation strategies

like data augmentation or class weighting.

• Null Images: The inclusion of null images aligns with real-world scenarios, potentially improving

model robustness.

• Class Relationships: Strong co-occurrence patterns between Vehicles and Traffic Lights emphasize

the need for context-aware models.

6.3 Quantitative Results

This section presents the results of 12 experiments conducted using the Ultralytics package on the curated

custom dataset for the 2D object detection task. The experiments aimed to evaluate the performance of 12
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(a) Label distribution in Train split (b) Images with and without labels in Train split

(c) Label distribution in Validation split (d) Images with and without labels in Validation split

(e) Label distribution in Test split (f) Images with and without labels in Test split

Figure 6.6: Visual representation of label distributions and the presence of unlabeled images across dataset splits.
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(a) Class co-occurrence matrix Train split (b) Class co-occurrence matrix Validation split

(c) Class co-occurrence matrix Test Split (d) Percentage of null images in all splits of the dataset.

Figure 6.7: Class co-occurrence matrices for Train, Validation, and Test splits and percentage of unlabeled images across splits.
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YOLO model configurations across training, validation, and testing phases and to find the best performing

model.

6.3.1 Overview of Training and Testing

The models were trained for 100 epochs using distributed computing across four NVIDIA RTX A6000

GPUs, each equipped with 48 GB of memory, as described in Chapter 5, section 5.5. Each GPU handled an

effective batch size of 32, resulting in a total batch size of 128 for the experiments. During testing, a single

NVIDIA RTX A6000 GPU was utilized. The training process leveraged the Ultralytics YOLO framework

with the following hyperparameters:

• Optimizer: AdamW [169], with a learning rate of 0.000714, momentum of 0.9, and weight decay of

0.001.

• Batch Size: 128 across all GPUs combined.

• Image Size: All images were resized to 640×640 pixels.

• Early Stopping: Patience was set to 10 epochs to prevent overfitting and save computation.

• Pretrained Weights: The models were initialized with pretrained weights, to accelerate convergence

and improve performance.

• Automatic Mixed Precision (AMP) [156]: Enabled to optimize memory usage and speed during

training.

Validation was performed during training to monitor performance, while testing was conducted sepa-

rately to evaluate the generalizability of the models. The following commands demonstrate the pseudocode

for training and testing using the Ultralytics package, incorporating key parameters that define the dataset

configuration, computational setup, and evaluation thresholds.

• Training Command:

model.train(data="data.yaml", epochs=100, batch=128, imgsz=640,

patience=10, optimizer="AdamW", device=[0,1,2,3], amp=True)

• Testing Command:

model = YOLO("/last.pt")

model.val(data="data.yaml", batch=128, imgsz=640, conf=0.25,

iou=0.6, device=0, split="test")
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The ‘data’ parameter specifies a YAML configuration file that contains dataset-specific settings, such as the

paths to training and validation data, class labels, and the total number of classes. For distributed training,

the ‘device’ parameter is assigned as a list (e.g., ‘[0, 1, 2, 3]’), indicating that the training is performed in

distributed mode across multiple GPUs. This setup configures the ‘CUDA VISIBLE DEVICES’ environ-

ment variable to make GPUs with IDs 0, 1, 2, and 3 available for parallel computation across four GPUs,

enhancing training efficiency.

To optimize memory usage and accelerate training, AMP [156] is enabled by setting the ‘amp’ parameter

to ‘True’. This allows a combination of single-precision and half-precision computations during training,

reducing memory requirements while maintaining model accuracy. During testing, several key parame-

ters are used to ensure robust evaluation. The ‘conf’ parameter sets the minimum confidence threshold for

detections, where detections with confidence scores below the threshold (e.g., ‘conf=0.25’) are discarded.

The ‘iou’ parameter defines the Intersection Over Union (IoU) threshold for Non-Maximum Suppression

(NMS) [170], which helps reduce duplicate detections by suppressing overlapping bounding boxes with IoU

values greater than set threshold value, for example 0.6. The ‘split’ parameter specifies the dataset split (e.g.,

‘test’) to be used during testing, and inference is performed on a single GPU, defined by setting ‘device=0’.

This configuration ensures efficient resource utilization during training and precise evaluation during testing.

The use of distributed computing and advanced optimization techniques, such as AMP, aligns well with the

requirements of 2-Dimesional (2D) object detection tasks, providing a balance between computational effi-

ciency and model performance. The performance of each model was evaluated using key metrics, including

Precision, Recall, mAP(50), and mAP(50-95). For validation and testing phases, inference speed per image

(measured in milliseconds) was also recorded to assess computational efficiency and suitability for real-time

applications. These metrics allow a comprehensive comparison of model performance, highlighting the

trade-off between accuracy and speed.

Tables 6.3, 6.4, and 6.7 summarize the training, validation, and testing results, respectively, for all 12

YOLO model configurations. Each of the three tables lists the model names and their corresponding perfor-

mance results. The class type ‘all’ encompasses all four classes from the custom dataset: Vehicle, Pedestrian,

Traffic Light, and Traffic Signs. The numeric values in the model names indicate the generation of the YOLO

model; for example, ‘8’ represents the eighth variant, while ‘11’ denotes the 11th and the latest generation

at the time this report was composed. The naming convention for models categorizes them based on their

size and complexity. The categories include: ‘n’ for nano models, ‘t’ for tiny models, ‘s’ for small models,

and ‘m’ for medium size models. In the specific case of YOLOv9, the model lineup includes a tiny model

variant, denoted as ‘t’, instead of a nano model, which is not offered for this version. Notably, the nano and

tiny models are similar in terms of their specifications and capabilities.

6.3.2 Training Results

Table 6.3 shows the performance metrics achieved during the training phase, where YOLOv8m, YOLOv9m

and YOLO11m are top-performing models across various benchmarks. Models ending in “m” (medium)
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generally outperform their smaller counterparts, such as “s” (small) or “n” (nano), due to their more com-

plex architectures. Among the smallest models, YOLOv8n demonstrates superior performance compared to

its counterparts. Among the medium size models, YOLOv9m exhibits higher precision (0.927 vs. 0.914),

slightly lower recall (0.694 vs. 0.712), approximately equal performance metric mAP50 (0.83 vs. 0.837)

and second best mAP50-95 (0.653 vs. 0.66) when compared to YOLOv8m. These results indicate that

YOLOv8m has an edge over YOLOv9m and YOLO11m in training metrics.

Similarly, YOLOv8s outperforms YOLO11s in precision (0.907 vs. 0.903) and mAP50-95 (0.629 vs.

0.627), although YOLO11s achieves slightly higher recall (0.687 vs. 0.678) and mAP50 (0.822 vs. 0.817).

Overall, YOLOv8s presents a better balance of performance metrics. Furthermore, YOLOv9m surpasses

YOLOv9s in precision (0.927 vs. 0.901), recall (0.694 vs. 0.665), mAP50 (0.83 vs. 0.809), and mAP50-

95 (0.653 vs. 0.617), establishing itself as the better-performing model. On the other hand, YOLOv10n

underperforms in comparison to YOLOv8n and YOLOv11n in nearly all metrics. For example, YOLOv8n

exhibits higher precision (0.899 vs. 0.833), recall (0.625 vs. 0.603), and mAP50-95 (0.583 vs. 0.555). These

findings confirm that among the smallest models, YOLOv8n achieves the best performance.

Figure 6.8 provides a comprehensive view of the training and validation loss curves for the YOLO11m

model, along with validation metrics including precision, recall, mAP(50), and mAP(50-95). The figure

demonstrates a clear convergence of the loss curves, with both training and validation losses decreasing

steadily over the 100 epochs. Concurrently, the validation metrics show an increasing trend, indicating im-

proved model performance and effective learning. These trends emphasize the optimization and convergence

of YOLO11m during training. The three losses—Box, DFL, and Classification—are integral to calculating

the total loss in YOLO11m. The box loss corresponds to the model’s ability to accurately locate objects

within their bounding boxes. The DFL (Distribution Focal Loss) is designed to address class imbalance

during object detection, ensuring that underrepresented classes are effectively learned. Meanwhile, the clas-

sification loss ensures that detected objects are correctly classified into their respective categories. Together,

these losses guide the model towards accurate localization, classification, and balance across all classes in

the dataset [130, 137, 171, 172, 155].

While these results highlight strong training performance, they do not fully account for the model’s

generalization ability, which necessitates further validation and testing evaluations.

6.3.3 Validation Results

Table 6.4 provides the validation results for all 12 YOLO models. The best-performing models in terms of

mAP(50-95) are YOLO11m (0.529), YOLOv8m (0.525), and YOLOv9m (0.521). These models also show

competitive mAP(50) values, confirming their robustness during validation.

At an IoU threshold of 0.6 and a confidence threshold of 0.25, the following curves depicted in fig-

ure 6.9 were obtained on the validation set. The precision-confidence curve (6.9a) plots precision (y-axis)

against confidence (x-axis). The legend entry “all classes 1.00 at 1.00” indicates perfect precision (100%)

at the highest confidence threshold of 1.00, which is uncommon and may suggest overfitting. In the recall-
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Figure 6.8: Training and Validation Loss Curves for YOLO11m on our Custom Dataset, Alongside Validation Metrics (Precision, Re-

call, mAP@50, mAP@50-95). The loss curves exhibit a decreasing and converging trend, while the metrics demonstrate an increasing

trend with convergence, indicating model optimization and optimal performance by the 100th epoch.

Model Name Epoch Precision ↑ Recall ↑ mAP50 ↑ mAP50-95 ↑ Fitness Score ↑
YOLOv8n 100 0.899 0.625 0.786 0.583 0.6033

YOLOv8s 97 0.907 0.678 0.817 0.629 0.6478

YOLOv8m 100 0.914 0.712 0.837 0.660 0.6777

YOLOv9t 90 0.880 0.602 0.768 0.567 0.5871

YOLOv9s 100 0.901 0.665 0.809 0.617 0.6362

YOLOv9m 98 0.927 0.694 0.830 0.653 0.6707

YOLOv10n 99 0.833 0.603 0.752 0.555 0.5747

YOLOv10s 99 0.885 0.672 0.808 0.618 0.6370

YOLOv10m 99 0.893 0.684 0.816 0.638 0.6558

YOLO11n 98 0.884 0.617 0.777 0.573 0.5934

YOLO11s 100 0.903 0.687 0.822 0.627 0.6465

YOLO11m 99 0.913 0.711 0.836 0.652 0.6704

Table 6.3: Model specific training results at IoU of 0.6 and confidence of 0.25 for all classes on the train split of custom dataset with

4485 training images, showing Precision, Recall, mAP(50), mAP(50-95) and Fitness Score for model comparison.

confidence curve (6.9b), “all classes 0.79 at 0.000” shows a recall of 79% at the lowest confidence threshold,

reflecting the model’s ability to capture most true positives but with a potential increase in false positives.

The precision-recall curve (6.9c) reveals a mean average precision (mAP) of 77.3% across all four classes

at an IoU threshold of 0.5. In the F1-confidence curve (6.9d), the peak F1 score of 76% is achieved at a

confidence threshold of 0.317, indicating the optimal balance between precision and recall. This optimal

confidence threshold of 0.317 highlights the importance of testing the YOLO11m model at this value, as

discussed in the next section.
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(a) Precision-Confidence curve (b) Recall-Confidence curve

(c) Precision-Recall curve (d) F1-Confidence curve

Figure 6.9: Performance evaluation of the YOLO11m model on the validation dataset, depicted through Precision-Confidence, Recall-

Confidence, Precision-Recall, and F1-Confidence curves.
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Model Class Epoch Dataset Split Precision ↑ Recall ↑ mAP(50)↑ mAP(50-95) ↑
YOLOv8n all 100 Validation 0.867 0.602 0.681 0.442

YOLOv8s all 97 Validation 0.870 0.653 0.739 0.496

YOLOv8m all 100 Validation 0.892 0.672 0.771 0.525

YOLOv9t all 90 Validation 0.859 0.590 0.667 0.434

YOLOv9s all 100 Validation 0.872 0.643 0.726 0.486

YOLOv9m all 98 Validation 0.853 0.685 0.764 0.521

YOLOv10n all 99 Validation 0.829 0.583 0.661 0.433

YOLOv10s all 99 Validation 0.867 0.650 0.737 0.494

YOLOv10m all 99 Validation 0.858 0.665 0.757 0.518

YOLO11n all 98 Validation 0.870 0.597 0.678 0.438

YOLO11s all 100 Validation 0.884 0.650 0.737 0.499

YOLO11m all 99 Validation 0.895 0.670 0.773 0.529

Table 6.4: Validation results for YOLO models at IoU=0.6 and confidence=0.25, showing Precision, Recall, mAP(50), and mAP(50-

95). The ↑ symbol indicates that a higher value is preferable. The epoch number corresponds to the best model.

6.3.4 Testing Results

An IoU threshold of 0.6 and a fixed confidence score of 0.25 were used during training and validation. For

further evaluation, optimal confidence values were derived from F1-Confidence curves on the validation set

using inference on the best model checkpoint in each case. These values were applied during testing at an

IoU threshold of 0.6 to ensure consistent comparisons across models. Table 6.5 summarizes these results.

Model Epoch Class Dataset Split IoU Confidence Precision Recall mAP(50) mAP(50-95)

YOLOv8n 100 all Test 0.6 0.247 0.856 0.595 0.753 0.534

YOLOv8s 97 all Test 0.6 0.241 0.850 0.636 0.776 0.563

YOLOv8m 100 all Test 0.6 0.315 0.906 0.652 0.798 0.589

YOLOv9t 90 all Test 0.6 0.290 0.867 0.550 0.733 0.527

YOLOv9s 100 all Test 0.6 0.266 0.886 0.616 0.775 0.560

YOLOv9m 98 all Test 0.6 0.156 0.853 0.674 0.799 0.580

YOLOv10n 99 all Test 0.6 0.264 0.812 0.562 0.719 0.518

YOLOv10s 99 all Test 0.6 0.233 0.857 0.613 0.765 0.558

YOLOv10m 99 all Test 0.6 0.320 0.879 0.618 0.773 0.575

YOLO11n 98 all Test 0.6 0.280 0.867 0.572 0.745 0.532

YOLO11s 100 all Test 0.6 0.304 0.899 0.627 0.785 0.576

YOLO11m 99 all Test 0.6 0.317 0.901 0.653 0.799 0.588

Table 6.5: Comparison of YOLO models based on Precision, Recall, mAP(50), and mAP(50-95) at an IoU threshold of 0.6, optimal

confidence scores and best model checkpoint for inference. The evaluation was performed on the test dataset consisting of 641 images.

The analysis of Table 6.5 provides valuable insights into the performance of the YOLO models under

evaluation, with the mAP(50-95) metric serving as the primary indicator for precise classification and lo-

calization. Among the models, YOLOv8m stands out as the best-performing model, achieving the highest

mAP(50-95) of 0.589, demonstrating its consistent ability to predict accurate bounding boxes across various

IoU thresholds. This performance is further supported by its strong precision (0.906) and recall (0.652). For

a balanced model, YOLO11m is a close contender, with an mAP(50-95) of 0.588, complemented by high

precision (0.901) and slightly better recall (0.653). The negligible 0.17% difference in mAP(50-95) between

YOLO11m and YOLOv8m suggests that YOLO11m offers equivalent overall performance, making it partic-
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ularly suitable for applications prioritizing higher recall, which translates to fewer false negatives and more

robust detection of positive instances. In contrast, the weakest model based on the mAP(50-95) metric is

YOLOv10n, with a score of 0.518. This lower score aligns with its relatively weaker precision (0.812) and

recall (0.562), highlighting its limited effectiveness in tasks requiring accurate detection and localization. In

summary, YOLOv8m excels as the top-performing model, YOLO11m provides a well-balanced alternative

with strong recall, and YOLOv10n demonstrates the lowest performance among the evaluated models.

Additionally, two supplementary testing scenarios were evaluated on the last model checkpoint from

the 100th epoch of each YOLO model: (A) IoU: 0.6 with a fixed confidence of 0.25, and (B) IoU: 0.5

with optimal confidence values from the F1-Confidence curve. Scenario (A) provides a consistent baseline,

while Scenario (B) reflects each model’s balanced performance by leveraging optimal confidence thresholds.

Detailed results for these scenarios are presented in the section 6.4.

Confusion Matrix: The confusion matrix shown in figure 6.10 illustrates the performance of the YOLOv8m

model on the test dataset across four classes: Pedestrian, Traffic Signs, Vehicle, and Traffic Light. Among

these, the Vehicle class achieved the highest accuracy with 1227 true positives, highlighting the model’s

strong detection capabilities for this category. However, misclassifications are notable, particularly with

Traffic Light (979), Vehicle (150), Pedestrian (99), and Traffic Signs (91) being frequently confused with

the Background, reflecting challenges in distinguishing these objects from non-object regions. While Traf-

fic Lights showed good detection performance with 783 true positives, they were also significantly misclas-

sified as Background (979). These results indicate that, despite strong detection performance of YOLOv8m

model for Vehicles, improvements are needed in detecting smaller or less distinct classes such as Traf-

fic Lights, Pedestrians, and Traffic Signs, as well as in minimizing confusion with the Background.

6.3.5 Real-Time Performance

The analysis of the YOLO models reveals key insights into their performance for real-time applications,

with a focus on the tradeoff between mAP(50-95) accuracy, model size, and speed. Among the models,

YOLOv8m and YOLO11m are nearly identical in terms of mAP(50-95), scoring 0.589 and 0.588 respec-

tively, demonstrating superior classification and localization capabilities. However, YOLOv8m has a slightly

higher speed (8.3 ms) compared to YOLO11m (8.5 ms), which translates to marginally better real-time per-

formance, though the difference is negligible. These two models represent the most accurate choices, but

their higher latency makes them less suitable for extremely time-sensitive applications.

The best-performing model in terms of mAP(50-95) is YOLOv8m, reflecting its ability to deliver

precise results, albeit at the cost of higher processing time. Conversely, the least-performing model is

YOLOv10n, with an mAP(50-95) of 0.518, despite being the fastest model with a speed of 4.3 ms. This

highlights the significant tradeoff between speed and accuracy, as smaller models like YOLOv10n offer

rapid processing at the expense of detection reliability.
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Figure 6.10: Confusion matrix for the YOLOv8m model on test set, highlighting its classification accuracy across all object classes.

Overall, the tradeoff between mAP(50-95) and speed is a crucial consideration in model selection. Larger

models, such as YOLOv8m and YOLO11m, achieve high accuracy but come with increased latency, whereas

smaller models like YOLOv10n prioritize speed but compromise on accuracy. For applications requiring

a balance, models like YOLO11s provide a practical middle ground with competitive mAP(50-95) and

reasonable speed.

6.4 Additional Evaluation Results

The additional testing results are categorized into two parts based on the IoU and confidence score val-

ues. Table 6.7 summarizes the results for scenario (A), while Table 6.8 presents scenario (B), which utilizes

the more commonly used IoU threshold of 0.5. This scenario highlights the models’ generalization capabil-

ities under optimal conditions.
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Model Preprocess Inference Postprocess Speed Frames

(ms/image)↓ (ms/image)↓ (ms/image)↓ (ms/image)↓ (↑)

YOLOv8n 1.9 1.3 2.6 5.8 172

YOLOv8s 1.9 2.5 1.8 6.2 161

YOLOv8m 1.9 4.8 1.6 8.3 120

YOLOv9t 1.9 1.7 1.9 5.5 182

YOLOv9s 1.9 3.0 1.6 6.5 154

YOLOv9m 1.9 5.7 1.3 8.9 112

YOLOv10n 1.9 1.7 0.7 4.3 233

YOLOv10s 2.0 2.7 0.3 5.0 200

YOLOv10m 1.9 5.3 0.3 7.5 133

YOLO11n 1.9 1.9 3.1 6.9 145

YOLO11s 1.9 2.5 2.0 6.4 156

YOLO11m 1.9 5.1 1.5 8.5 118

Table 6.6: Performance metrics for various YOLO models including pre-processing time, inference time, post-processing time, speed,

and frames per second. Metrics marked with ↓ indicate that lower values are better, while those marked with ↑ indicate that higher

values are better.

Scenario A (IoU: 0.6, Confidence: 0.25, Checkpoint: Last): The testing results, summarized in Ta-

ble 6.7, further validate the generalization capabilities of the models. YOLO11m and YOLOv8m both

achieve the highest mAP(50) of 0.802, demonstrating strong detection performance on the unseen test

dataset. However, YOLOv8m outperforms YOLO11m in terms of inference speed (4.8 ms vs. 5.2 ms) and

offers equal mAP(50-95) (0.588 vs. 0.588), showing its suitability for real-time applications. The testing

results also highlight the trade-off between inference speed and detection accuracy. For instance, YOLOv8n

achieves fast inference (1.1 ms) but sacrifices detection accuracy, with a lower mAP(50) of 0.753. In con-

trast, YOLO11m maintains high accuracy while achieving reasonable inference speed, offering a balanced

solution for real-time object detection tasks. At an IoU threshold of 0.6 and a confidence threshold of 0.25,

the test set results are depicted in Figure 6.12. The precision-confidence curve (Figure 6.12a) indicates per-

fect precision (100%) at a confidence level of 0.911, suggesting potential overfitting. The recall-confidence

curve (Figure 6.12b) shows a recall of 67% at the lowest confidence threshold, capturing a majority of true

positives but accompanied by higher false positives.

The precision-recall curve (Figure 6.12c) reports a mean average precision (mAP) of 80.2% across four

classes at an IoU threshold of 0.5. Additionally, the F1-confidence curve (Figure 6.12d) identifies 0.227

as the optimal confidence threshold, where the peak F1 score of 75% is achieved, effectively balancing

precision and recall.

Scenario B (IoU: 0.5, Confidence: Optimal Confidence scores, Checkpoint: Last): Table 6.8 compares

the performance of various YOLO models evaluated under Scenario B. The Confidence column indicates

the optimal thresholds derived from the F1-Confidence curve during validation, ensuring the best balance of

precision and recall. YOLO11m demonstrates superior overall performance with the highest mAP@0.5:0.95

(0.590) followed by YOLOv8m (0.588), highlighting their ability to balance precision and recall while

excelling in accurate detection and localization across varying IoU thresholds. This metric ensures robust
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Figure 6.11: Latency vs. mAP(50-95) plot showcasing the real-time performance evaluation of YOLO models. Models closer to the

top-left corner exhibit higher accuracy and faster overall speeds, making them ideal candidates for real-time deployments. Overall

speed in this case means sum of preprocessing time, inference time and postprocessing time in ms per image.

performance not just at lenient thresholds like IoU=0.5 but also at more stringent levels like IoU=0.95,

making YOLO11m and YOLOv8m particularly effective for applications requiring both detection accuracy

and precise localization.

While YOLOv9m excels in Recall (0.680) and mAP@0.5 (0.802), it does not provide the same level of

comprehensive performance across all IoU thresholds as YOLO11m and YOLOv8m. Additionally, although

YOLOv8n and YOLOv10n are the fastest models with inference speeds of 1.6ms per image, their lower

mAP@0.5:0.95 (0.534 and 0.520, respectively) indicates a trade-off in accuracy and localization capability.

For real-time applications where accurate object detection and localization are critical, YOLO11m and

YOLOv8m strikes the right balance. With an inference speed of 5.1ms and 5.0 ms per image respec-

tively, these models meets the requirements for real-time performance without sacrificing detection preci-

sion or localization accuracy, as evidenced by their high mAP@0.5:0.95 score. This makes YOLO11m and

YOLOv8m the optimal choice for scenarios that demand accurate real-time detection rather than prioritizing

speed above all else.



6.4. Additional Evaluation Results 75

(a) Precision-Confidence curve (b) Recall-Confidence curve

(c) Precision-Recall curve (d) F1-Confidence curve

Figure 6.12: Performance evaluation of the YOLO11m model on the test dataset in Scenario A, depicted through Precision-Confidence,

Recall-Confidence, Precision-Recall, and F1 Score-Confidence curves.
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Model Class Images Dataset Split Precision Recall mAP(50) mAP(50-95) Inference Speed

(ms/image)↓
YOLOv8n all 641 Test 0.857 0.595 0.753 0.534 1.1

YOLOv8s all 641 Test 0.868 0.630 0.776 0.565 2.2

YOLOv8m all 641 Test 0.886 0.670 0.802 0.588 4.8

YOLOv9t all 641 Test 0.860 0.572 0.743 0.531 1.5

YOLOv9s all 641 Test 0.875 0.620 0.775 0.557 3.1

YOLOv9m all 641 Test 0.896 0.649 0.795 0.586 5.9

YOLOv10n all 641 Test 0.804 0.572 0.722 0.517 2.2

YOLOv10s all 641 Test 0.837 0.625 0.765 0.559 3.8

YOLOv10m all 641 Test 0.852 0.644 0.779 0.572 6.1

YOLO11n all 641 Test 0.840 0.593 0.748 0.527 1.5

YOLO11s all 641 Test 0.873 0.643 0.787 0.575 2.6

YOLO11m all 641 Test 0.875 0.670 0.802 0.588 5.2

Table 6.7: Test results for YOLO models, showing Precision, Recall, mAP(50), mAP(50-95), and Inference Speed (ms/image) in

Scenario A.

Model Confidence Class Precision Recall mAP(50) mAP(50-95) Inference Speed

(ms/image)↓
YOLOv8n 0.247 all 0.862 0.595 0.754 0.534 1.8

YOLOv8s 0.241 all 0.861 0.632 0.777 0.565 2.4

YOLOv8m 0.315 all 0.907 0.652 0.798 0.589 5.0

YOLOv9t 0.290 all 0.888 0.560 0.744 0.535 1.9

YOLOv9s 0.266 all 0.889 0.615 0.776 0.560 3.0

YOLOv9m 0.156 all 0.859 0.680 0.802 0.582 5.6

YOLOv10n 0.264 all 0.816 0.565 0.723 0.520 1.6

YOLOv10s 0.233 all 0.829 0.627 0.764 0.558 2.9

YOLOv10m 0.320 all 0.876 0.623 0.775 0.576 5.1

YOLO11n 0.280 all 0.865 0.580 0.749 0.531 1.6

YOLO11s 0.304 all 0.901 0.626 0.785 0.576 2.5

YOLO11m 0.317 all 0.896 0.655 0.799 0.590 5.1

Table 6.8: Comparison of YOLO models tested in Scenario B, highlighting Precision, Recall, mAP(50), mAP(50-95), and Inference

Speed (ms/image) at an IoU threshold of 0.5 with optimal confidence scores. The evaluation was performed on the test dataset consisting

of 641 images.

6.5 Global Performance Conclusion

Scenario A: As shown in Table 6.9, the YOLO11m model achieves the highest mAP@0.5 of 0.802

and mAP@0.5:0.95 of 0.588, on par with YOLOv8m, while maintaining a slightly higher inference speed

(5.2ms compared to 4.8ms for YOLOv8m). This highlights YOLO11m’s capability to balance accuracy

with computational efficiency.

Scenario B: As presented in Table 6.10, the YOLO11m model achieves the highest mAP@0.5:0.95

of 0.590 and the second-highest mAP@0.5 of 0.799. Despite these high detection accuracies, YOLO11m

maintains a lower inference speed (5.1ms compared to 5.6ms for YOLOv9m), showcasing its strength in

scenarios that demand real-time performance.

Across both Scenario A and Scenario B, YOLO11m and YOLOv8m consistently exhibit their ability to

balance detection accuracy and inference speed. These models achieve the highest mAP@0.5:0.95 scores in
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both scenarios, underlining their effectiveness in precise localization and comprehensive detection. While

certain models excel in specific metrics, such as inference speed or mAP@0.5, YOLO11m and YOLOv8m

provide an optimal solution for applications requiring accurate real-time detection without sacrificing overall

performance.

These findings align with the evaluation in Subsection 6.3.4. Furthermore, Figure 6.11 clearly illustrates

the trade-off between speed and performance (mAP@0.5:0.95) for each YOLO series. The YOLOv10 se-

ries emerges as the fastest in every size-based model variant, whereas YOLO11m demonstrates the highest

performance among nano and small variants. Notably, YOLO11m performs comparably to the highest-

performing model, YOLOv8m. The YOLO11 series offers high-performing model variants with robust

mAP@0.5:0.95 scores while maintaining reasonable inference speeds.

Given that ultra-high overall speed is not a critical requirement for this project, the YOLO11 and

YOLOv8 models strike an ideal balance between detection accuracy and performance efficiency. Con-

versely, in scenarios prioritizing compact model size and faster operational capacity—such as deployment

on edge devices—YOLOv10n stands out as the preferred choice. Its smaller footprint and expedited pro-

cessing capabilities, as evidenced by its positioning in the plot, make it an excellent option for edge-based

applications.

Model Dataset Split mAP(50) mAP(50-95) Inference Speed (ms/image)

YOLOv8m Test 0.802 0.588 4.8

YOLOv9m Test 0.795 0.586 5.9

YOLOv10m Test 0.779 0.572 6.1

YOLO11m Test 0.802 0.588 5.2

Table 6.9: Performance summary of top-performing YOLO models on the test dataset in Scenario A.

Model Dataset Split mAP(50) mAP(50-95) Inference Speed (ms/image)

YOLOv8m Test 0.798 0.589 5.0

YOLOv9m Test 0.802 0.582 5.6

YOLOv11s Test 0.785 0.576 2.5

YOLO11m Test 0.799 0.590 5.1

Table 6.10: Performance summary of top-performing YOLO models on the test dataset in Scenario B.

6.5.1 YOLO11m: Overfitting vs Underfitting

The training and validation loss curves for the YOLO11m model, depicted in Figures 6.13, 6.14 and 6.15

provide valuable insights into the model’s learning dynamics and potential issues related to overfitting or un-

derfitting. In Figure 6.13, the box loss [172] curves demonstrate that the training loss remains slightly lower

than the validation loss throughout the training process. This behavior suggests minor overfitting, as the

model performs slightly better on the training data than on the validation set. However, the close alignment

between the two curves indicates good generalization, with only modest scope for further improvement.
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Figure 6.14 presents the classification loss (cls loss). Here, the training and validation loss curves con-

verge after epoch 20, reflecting balanced learning and the absence of notable overfitting or underfitting.

This suggests that the model is effectively optimizing the classification component of the loss. In contrast,

Figure 6.15 highlights an atypical pattern in the distribution focal loss (dfl loss) [171]. The training loss

consistently exceeds the validation loss, indicating underfitting and suggesting a suboptimal optimization

strategy for this component. This disparity points to potential weaknesses in the model’s ability to effec-

tively minimize the dfl loss during training.

Overall, these observations underscore areas for potential improvement, such as mitigating overfitting

in the box loss and refining the optimization strategy for the dfl loss to further enhance the model’s overall

performance.

Figure 6.13: Box Loss Curves for YOLO11m Across 100 Epochs, Illustrating Training and Validation Loss Trends.

6.6 Qualitative Evaluation of Real-Time Object Detection

This section evaluates the performance of the YOLO11m model for real-time 2D object detection when

deployed in both previously unseen and seen CARLA simulation maps/environments. The qualitative anal-

ysis is conducted using visualizations of real-time detection outputs, highlighting the model’s generaliza-

tion capability, advantages, and limitations. The YOLO11m model, trained on a custom dataset for 100

epochs, uses the best and last checkpoints from the 99th epoch and 100th epoch for inference, leverag-

ing the YOLOInference class for deployment. The methodology for this phase is detailed in Section 4.6.

Between YOLOv8m and YOLO11m, either model can be selected for deployment due to their high perfor-

mance. However, for this project, the YOLO11m model has been chosen as it belongs to the YOLO11 se-

ries—comprising YOLO11m, YOLO11s, and YOLO11n—which demonstrates superior performance when
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Figure 6.14: Classification Loss Curves for YOLO11m Across 100 epochs,Illustrating Training and Validation Loss Trends.

evaluated globally against other model series in figure 6.11.

Advantages:

• The generalization capability of the YOLO11m model is demonstrated in figure 6.16, which shows a

grid of 2x4 images corresponding to 8 cameras mounted on a Tesla Model 3 in CARLA’s Town07 map.

Importantly, this map is entirely unseen during training, providing a robust test for generalization.

The results indicate that the model performs well in detecting objects within a new environment, with

differing background and object locations, under default weather conditions resembling evening or

almost night.

• Similarly, figure 6.17 illustrates the model’s performance in Town05 during nighttime with moderate

traffic. Despite the challenges posed by low-light conditions, the model successfully detects objects

illuminated by urban lighting, showcasing its potential for deployment in realistic nighttime urban

lighting based driving scenarios.

• In moderate-traffic, daytime conditions, figure 6.18 highlights the model’s ability to generalize ef-

fectively, even in environments with significant occlusions. The model demonstrates robust object

detection, accurately identifying vehicles, pedestrians, traffic lights, and traffic signs amidst challeng-

ing scenarios.

Limitations: While the YOLO11m model exhibits strong generalization capabilities, some limitations are

observed during inference.
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Figure 6.15: Distribution Focal Loss curves for YOLO11m across 100 epochs, Illustrating Training and Validation Loss Trends.

• Figure 6.19 highlights duplicate detections, where the model predicts the same vehicle twice: once

with 64% confidence for the full body and again with 36% confidence for a partial front view. Addi-

tionally, the model fails to detect a distant traffic sign in the same frame, indicating challenges with

long-range detections using RGB images and the need for further improvement in recall.

• In complete darkness, the model’s bias toward the vehicle class becomes evident. Figures( 6.20a,6.20b)

shows the model incorrectly labeling a background as a vehicle. This limitation suggests inefficiencies

in using RGB-only image data for nighttime detection. Alternatives such as multi-spectral cameras,

far-infrared systems, or near-infrared imaging could address this issue. This observation is further

supported by the confusion matrix results, which show that the background class is often misclassified

as other classes (refer to Figure A.6).

• Moreover, Figure 6.20c illustrates a scenario where the model predicts the entire camera frame as a

vehicle with 74% confidence, underscoring the need for improved dataset curation and hyperparameter

tuning.
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Figure 6.16: Real-time object detection using YOLO11m in Town07 of CARLA simulation under default weather conditions. The

results demonstrate the model’s generalization to a completely unseen environment.

Figure 6.17: Real-time object detection using YOLO11m in Town05 of CARLA simulation during nighttime. The model demonstrates

effective performance under moderate urban visibility or lighting conditions during night.
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Figure 6.18: Real-time object detection using YOLO11m in Town03 of CARLA simulation during daytime. The model performs well

in a moderate-traffic scenario with significant occlusions.

Figure 6.19: Real-time object detection using YOLO11m in CARLA simulation. The frame highlights duplicate detections and missed

long-range traffic signs.
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(a) Model bias toward the vehicle class in nighttime scenarios.

(b) Model incorrectly predicts a road as a vehicle.

(c) Model predicts the entire frame as a vehicle.

Figure 6.20: Generalization limitations of YOLO11m model during nighttime scenarios. These results highlight issues with model

bias, long-range detection, hyperparameter tuning and dataset quality.



Chapter 7

Discussion

Building on the previous chapters, this chapter critically examines the key challenges, limitations, and im-

plications of the conducted research. By analyzing the experimental results and situating them within the

broader context of autonomous driving and object detection, it provides actionable insights for addressing

identified issues and advancing the field. The discussion is organized into two main sections: challenges and

limitations, and implications.

7.1 Challenges and Limitations

The research faced several challenges and limitations that constrained the scope and outcomes of the study.

First, the dataset used was relatively small, which limited the extent of the experiments and potentially

affected the generalizability of the results. Additionally, the dataset included only four labeled classes,

which were insufficient to represent the complexity of real-world environments. The manual review step in

the labeling process was also time-intensive, making it difficult to scale the data preparation phase.

Experimentally, baseline experiments were conducted without employing advanced techniques such as

data augmentation, regularization, or hyperparameter tuning. This lack of optimization highlighted areas

where the model’s performance could be further improved. Duplicate detections were frequently observed,

where the same object was predicted multiple times with varying confidence levels, while missed detections,

particularly for long-range objects like traffic signs, exposed challenges in recall and multi-scale detection.

Environmental factors also posed significant challenges. For instance, the reliance on RGB-only data in

low-light conditions led to frequent misclassifications, such as backgrounds being labeled as vehicles. Some

scenarios also resulted in false positives, where entire frames were incorrectly predicted as single objects,

underscoring the need for better dataset curation and model refinement.

Finally, generalization and scalability presented key limitations. While the model generalized well to

unseen environments, it was not tested under extreme weather conditions such as heavy rain or snow. Ad-

ditionally, extending the framework to include tasks such as Sensor fusion or 3D object detection requires

significant effort in sensor alignment and dataset expansion. These challenges reflect the broader issues

84
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associated with deploying object detection systems in real-world scenarios.

7.2 Implications

Despite these challenges, the findings of this research have important implications for the field of au-

tonomous driving and object detection. The study highlights the critical need for larger, more diverse datasets

that include additional classes and environmental conditions to ensure better real-world representation. Fully

Automated labeling methods could also play a pivotal role in reducing the time and cost associated with data

preparation.

From a technical perspective, improving the detection process is essential. Enhanced loss functions

and further advancements in model architecture or post-processing techniques could mitigate the issue of

duplicate and missed detections. Moreover, integrating multi-modal imaging, such as far-infrared or near-

infrared images, could significantly improve detection performance under challenging conditions like low

light.

This research also opens up several avenues for future exploration. Techniques such as data augmenta-

tion, advanced regularization, and hyperparameter tuning offer promising opportunities for enhancing model

performance. Investigating model architectures optimized for specific challenges, including occlusions, dy-

namic backgrounds, and diverse object sizes, is another crucial direction for future work.

The custom simulation framework demonstrates significant potential for advancing autonomous driving

research through real-world applications. Tailored to simulate a Tesla Model 3 equipped with 21 sensors,

it provides a robust platform for testing 2D object detection algorithms and can be extended to support

tasks such as sensor fusion, 3D object detection, and panoptic segmentation. Its modular, scalable design

enables seamless integration of additional sensors and adaptation to diverse simulation scenarios, making it

an indispensable tool for a wide range of research objectives.

7.3 Summary

This chapter has discussed the key challenges and limitations encountered during the research, includ-

ing dataset constraints, experimental inefficiencies, and environmental factors. It has also highlighted the

broader implications of the study, emphasizing its potential to advance object detection systems in au-

tonomous driving. These insights lay the foundation for addressing limitations and exploring future research

directions.



Chapter 8

Conclusion and Future Work

This final chapter summarizes the key findings presented in Chapter 6, reflecting on their alignment with the

objectives outlined in Section 1.2.1. It also outlines potential directions for future research, offering insights

to guide further advancements in the field.

8.1 Conclusion

The objectives of this research project were successfully achieved. A comprehensive simulation setup of

a Tesla Model 3, equipped with 8 cameras, 12 ultrasonic sensors, and 1 radar, was developed to facilitate

sensor data collection. This setup enabled the creation of a synthetic dataset consisting of 6,400 anno-

tated images, capturing vehicles, traffic lights, pedestrians, and traffic signs. The dataset, distributed across

training, validation, and test splits, represented diverse driving scenarios and served as the foundation for

training state-of-the-art YOLO models, including YOLOv8, YOLOv9, YOLOv10, and YOLO11, as well as

their size-based versions. Among the 12 models evaluated, YOLOv8m and YOLO11m emerged as the top-

performing models, achieving the highest mAP@0.5:0.95—a rigorous and comprehensive metric assessing

both detection accuracy and precise localization. On a global comparison at the series level, the YOLO11

series demonstrated superior overall performance. Additionally, the YOLO11m model was successfully in-

tegrated into the CARLA Simulator, facilitating accurate and real-time object detection within the simulated

environment.

Despite these accomplishments, the study faced limitations that point to opportunities for future work.

Dataset constraints, such as limited size and class diversity, posed challenges to model generalization. Ad-

ditionally, the absence of advanced techniques like data augmentation and hyperparameter tuning hindered

further optimization. Nonetheless, this research provides valuable insights into the baseline performance

and generalization capabilities of YOLO models on the custom dataset and establishes a solid foundation

for future advancements in autonomous driving simulations.
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8.2 Future Work

Building on the contributions of this research project, several promising directions for future work are identi-

fied. Expanding the synthetic dataset to encompass a broader range of environmental conditions, including

adverse weather and diverse lighting scenarios, is essential for enhancing model robustness and generaliz-

ability. The integration of real-world data and the application of domain adaptation techniques offer valuable

opportunities to bridge the gap between simulation and real-world performance.

Future research should also prioritize advanced optimization strategies, such as self-supervised learn-

ing, automated architecture search, and innovative data augmentation techniques, to further improve model

efficiency and accuracy. Incorporating multi-modal data—including radar, ultrasonic sensor data, RGB

images, and near-infrared imagery—could provide significant advantages in addressing challenges posed by

extreme weather and lighting conditions. Developing robust sensor fusion algorithms for precise temporal

and spatial alignment of multi-modal data will be crucial for achieving optimal performance.

Extending the framework to include additional tasks, such as instance segmentation and 3D object

detection, represents another exciting avenue for future exploration. These extensions will enhance the

versatility and applicability of the simulation framework, supporting more complex autonomous driving

scenarios.

Finally, transitioning the proposed framework from simulation to real-world deployment is a critical

next step. This transition will require addressing challenges related to real-time performance, hardware

constraints, and edge deployment, ensuring the system’s feasibility for practical applications.

In summary, this research project has made significant contributions to the development of simulation-

based object detection systems for autonomous driving. While the findings establish a strong foundation,

the proposed directions for future work underscore the exciting opportunities to further advance the field,

paving the way for safer, more reliable, and efficient autonomous driving technologies.
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Appendix A

Supplementary Material

A.1 Qualitative Evaluation: YOLO11m

This section presents the qualitative evaluation of the YOLO11m model during the testing phase, using

visualizations of test batches. The visualizations compare the ground truth labels and the predicted labels

for selected batches from the validation and test dataset, offering insights into the model’s generalization

capability on unseen data. This serves as the qualitative evaluation step to assess the model’s reliability for

deployment in real-time object detection within the CARLA simulation environment.

To begin, we examine the visualization of a training batch used during the training phase of the YOLO11m

model, depicted in Figure A.1. This figure highlights how the different object classes—Pedestrians, Traffic

Signs, Vehicles, and Traffic Light—are numerically labeled as 0, 1, 2, and 3, respectively. This labeling

schema is consistent throughout the dataset and is essential for training the model to differentiate between

the four classes effectively.

Next, the visualization of ground truth labels for validation batch 0 is shown in Figure A.2, followed

by the corresponding model predictions for the same batch in Figure A.3. Moving to the testing phase,

Figure A.4 illustrates the ground truth labels for test dataset batch 1, while Figure A.5 shows the predictions

made by the YOLO11m model for the same batch. These visualizations assess the model’s generalization

capability after being fully trained for 100 epochs. The results demonstrate how effectively the YOLO11m

model generalizes to unseen data.

Collectively, these visualizations highlight the robustness and reliability of the YOLO11m model for 2D

object detection in real-world applications.

A.2 Confusion Matrix in Scenario A

The confusion matrix A.6 illustrates the performance of the YOLO11m model on the test dataset in scenario

(A) across four classes: Pedestrian, Traffic Signs, Vehicle, and Traffic Light. Among these, the Vehicle class

achieved the highest accuracy with 1233 true positives, highlighting the model’s strong detection capabili-
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Figure A.1: Visualization of the training batch 0 during YOLO11m model training. The figure shows how the dataset numerically

encodes classes (0: Pedestrian, 1: Traffic Signs, 2: Vehicle, 3: Traffic Light).

ties for this category. However, misclassifications are notable, particularly with Traffic Light (940), Vehicle

(144), Pedestrian (91), and Traffic Signs (84) being frequently confused with the Background, reflecting

challenges in distinguishing these objects from non-object regions. While Traffic Lights showed good de-

tection performance with 822 true positives, they were also significantly misclassified as Background (940).

These results indicate that, despite strong performance for Vehicles, improvements are needed in detecting

smaller or less distinct classes such as Traffic Lights, Pedestrians, and Traffic Signs, as well as in minimizing

confusion with the Background.

A.3 Trade-Off Between Detection Accuracy and Inference Speed

Scenario A: Figure A.7 illustrates the trade-off between inference speed and mAP(50) for all YOLO mod-

els in scenario A. In the comparative evaluation depicted in the plot, models such as YOLOv8n, YOLOv9t,

and YOLO11n distinguish themselves by their moderate detection accuracy and rapid inference times, mak-

ing them particularly suitable for real-time applications where immediacy is essential. Notably, YOLOv11s
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Figure A.2: Ground truth labels visualization for validation batch 0 during YOLO11m model training. This figure depicts the expected

annotations for objects in the dataset.

also exhibits a commendable balance, achieving one of the highest detection accuracies or mAP(50) score

with only a modest increase in inference time, as illustrated. However, YOLOv8n and YOLO11n, with

their respective inference speeds of 1.1 ms and 1.5 ms, do compromise on accuracy compared to their

more balanced counterparts, YOLOv8m and YOLO11m. This trade-off is clearly visible in the plot, where

YOLOv8m and YOLO11m demonstrate an optimal balance, offering robust mAP(50) scores while main-

taining reasonable inference speeds. Given that ultra-high inference speed is not a critical requirement for

this project, these models provide an ideal blend of detection accuracy and performance efficiency. Con-

versely, in scenarios that prioritize compact model size and faster operational capacity—such as deployment

on edge devices—YOLOv8n is shown to be the preferred choice due to its smaller footprint and expedited

processing capabilities, as indicated in the plot’s positioning of the models.

Scenario B: The figure A.8 highlights the trade-off between model accuracy and inference speed across

various YOLO models in scenario B. Models such as YOLOv8m, YOLOv9m, and YOLO11m achieve high

mAP(50) and mAP(50-95) scores, indicating strong object detection performance, but come at the cost
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Figure A.3: Predicted labels visualization for validation batch 0 during YOLO11m model inference on the validation dataset. This

figure shows how the model identifies objects based on the ground truth.

of slower inference speeds (5.0–5.6 ms per image). Conversely, models like YOLO11n, YOLOv10n and

YOLOv8n exhibit the fastest inference speeds ( (1.6- 1.8) ms per image), making them ideal for deployment

on edge devices where size, and inference speed are of paramount importance, but with lower mAP scores

compared to their larger counterparts.

For applications requiring a balance between accuracy and speed, YOLO11m and YOLOv8m offers

compelling options, delivering strong accuracy metrics (highest mAP(50-95)) while maintaining a reason-

able inference speed (5.1 ms per image).
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Figure A.4: Ground truth labels visualization for test dataset batch 1 during YOLO11m model inference. This figure illustrates the

manually annotated labels for the test images.
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Figure A.5: Predicted labels visualization for test dataset batch 1 during YOLO11m model inference. This figure shows how the model

predicts objects in the test dataset.
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Figure A.6: Confusion matrix for the YOLO11m model on test set, highlighting its classification accuracy across all object classes.

Figure A.7: Trade-off between mAP(50) and inference speed for all YOLO models based on test dataset in Scenario A. The bar chart

represents the mAP(50) values, and the line graph shows the inference speeds for each model.
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Figure A.8: The plot above illustrates the trade-off between mAP(50), mAP(50-95), and inference speed for various YOLO models

tested on the test dataset in scenario B. The bar chart displays mAP(50) and mAP(50-95) on the left y-axis, while the line plot shows

inference speed in milliseconds per image on the right y-axis. This visualization highlights the performance and efficiency of each

model, aiding in the selection of a model that balances accuracy and speed based on specific application needs.
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